关于超立方体Q4最小1边扩展的唯一性

IF 0.2 Q4 MATHEMATICS, APPLIED
A. Lobov, M. B. Abrosimov
{"title":"关于超立方体Q4最小1边扩展的唯一性","authors":"A. Lobov, M. B. Abrosimov","doi":"10.17223/20710410/58/8","DOIUrl":null,"url":null,"abstract":"One of the important properties of reliable computing systems is their fault tolerance. To study fault tolerance, you can use the apparatus of graph theory. Minimal edge extensions of a graph are considered, which are a model for studying the failure of links in a computing system. A graph G* = (V*,α*) with n vertices is called a minimal k-edge extension of an n-vertex graph G = (V, α) if the graph G is embedded in every graph obtained from G* by deleting any of its k edges and has the minimum possible number of edges. The hypercube Qn is a regular 2n-vertex graph of order n, which is the Cartesian product of n complete 2-vertex graphs K2. The hypercube is a common topology for building computing systems. Previously, a family of graphs Q*n was described, whose representatives for n>1 are minimal edge 1-extensions of the corresponding hypercubes. In this paper, we obtain an analytical proof of the uniqueness of minimal edge 1-extensions of hypercubes for n≤4 and establish a general property of an arbitrary minimal edge 1-extension of a hypercube Qn for n>2: it does not contain edges connecting vertices, the distance between which in the hypercube is equal to 2.","PeriodicalId":42607,"journal":{"name":"Prikladnaya Diskretnaya Matematika","volume":"1 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"About uniqueness of the minimal 1-edge extension of hypercube Q4\",\"authors\":\"A. Lobov, M. B. Abrosimov\",\"doi\":\"10.17223/20710410/58/8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the important properties of reliable computing systems is their fault tolerance. To study fault tolerance, you can use the apparatus of graph theory. Minimal edge extensions of a graph are considered, which are a model for studying the failure of links in a computing system. A graph G* = (V*,α*) with n vertices is called a minimal k-edge extension of an n-vertex graph G = (V, α) if the graph G is embedded in every graph obtained from G* by deleting any of its k edges and has the minimum possible number of edges. The hypercube Qn is a regular 2n-vertex graph of order n, which is the Cartesian product of n complete 2-vertex graphs K2. The hypercube is a common topology for building computing systems. Previously, a family of graphs Q*n was described, whose representatives for n>1 are minimal edge 1-extensions of the corresponding hypercubes. In this paper, we obtain an analytical proof of the uniqueness of minimal edge 1-extensions of hypercubes for n≤4 and establish a general property of an arbitrary minimal edge 1-extension of a hypercube Qn for n>2: it does not contain edges connecting vertices, the distance between which in the hypercube is equal to 2.\",\"PeriodicalId\":42607,\"journal\":{\"name\":\"Prikladnaya Diskretnaya Matematika\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Prikladnaya Diskretnaya Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17223/20710410/58/8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prikladnaya Diskretnaya Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17223/20710410/58/8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

可靠计算系统的一个重要特性是容错性。为了研究容错,你可以使用图论的工具。考虑图的最小边扩展,这是研究计算系统中链路失效的一种模型。有n个顶点的图G* = (V*,α*)称为n顶点图G = (V, α)的最小k边扩展,如果图G嵌入到从G*中通过删除其k条边中的任何一条而得到的每个图中,并且具有最小可能的边数。超立方体Qn是一个正规的n阶2n顶点图,它是n个完全2顶点图K2的笛卡尔积。超立方体是构建计算系统的常用拓扑。先前,我们描述了一组图Q*n,它们在n>1上的表示是相应超立方体的最小边1扩展。本文给出了n≤4的超立方体的最小边1-扩展的唯一性的解析证明,并建立了n≤2的超立方体Qn的任意最小边1-扩展的一般性质:它不包含连接顶点的边,在超立方体中顶点之间的距离等于2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
About uniqueness of the minimal 1-edge extension of hypercube Q4
One of the important properties of reliable computing systems is their fault tolerance. To study fault tolerance, you can use the apparatus of graph theory. Minimal edge extensions of a graph are considered, which are a model for studying the failure of links in a computing system. A graph G* = (V*,α*) with n vertices is called a minimal k-edge extension of an n-vertex graph G = (V, α) if the graph G is embedded in every graph obtained from G* by deleting any of its k edges and has the minimum possible number of edges. The hypercube Qn is a regular 2n-vertex graph of order n, which is the Cartesian product of n complete 2-vertex graphs K2. The hypercube is a common topology for building computing systems. Previously, a family of graphs Q*n was described, whose representatives for n>1 are minimal edge 1-extensions of the corresponding hypercubes. In this paper, we obtain an analytical proof of the uniqueness of minimal edge 1-extensions of hypercubes for n≤4 and establish a general property of an arbitrary minimal edge 1-extension of a hypercube Qn for n>2: it does not contain edges connecting vertices, the distance between which in the hypercube is equal to 2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Prikladnaya Diskretnaya Matematika
Prikladnaya Diskretnaya Matematika MATHEMATICS, APPLIED-
CiteScore
0.60
自引率
50.00%
发文量
0
期刊介绍: The scientific journal Prikladnaya Diskretnaya Matematika has been issued since 2008. It was registered by Federal Control Service in the Sphere of Communications and Mass Media (Registration Witness PI № FS 77-33762 in October 16th, in 2008). Prikladnaya Diskretnaya Matematika has been selected for coverage in Clarivate Analytics products and services. It is indexed and abstracted in SCOPUS and WoS Core Collection (Emerging Sources Citation Index). The journal is a quarterly. All the papers to be published in it are obligatorily verified by one or two specialists. The publication in the journal is free of charge and may be in Russian or in English. The topics of the journal are the following: 1.theoretical foundations of applied discrete mathematics – algebraic structures, discrete functions, combinatorial analysis, number theory, mathematical logic, information theory, systems of equations over finite fields and rings; 2.mathematical methods in cryptography – synthesis of cryptosystems, methods for cryptanalysis, pseudorandom generators, appreciation of cryptosystem security, cryptographic protocols, mathematical methods in quantum cryptography; 3.mathematical methods in steganography – synthesis of steganosystems, methods for steganoanalysis, appreciation of steganosystem security; 4.mathematical foundations of computer security – mathematical models for computer system security, mathematical methods for the analysis of the computer system security, mathematical methods for the synthesis of protected computer systems;[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信