{"title":"计算简单平面图的块图的单元周期的直接方法","authors":"B. Ivanov","doi":"10.17223/20710410/58/7","DOIUrl":null,"url":null,"abstract":"The proposed algorithm for calculating the cycles of the cells the simple planar graph block map is an extension of the classical depth-first search algorithm for cycles of the DFS-basis. The key idea of the modification of this algorithm is the strategy of right-hand traversal when passing the graph in depth. The vertex with the minimum coordinate on the OY axis is assigned as the starting vertex in the right-hand traversal. The exit from the initial vertex is performed along the edge with the minimum polar angle. The continuation of the traversal from each next vertex is carried out along an edge with a minimum polar angle relative to the edge along which arrived at the current vertex. A two-level structure of nested cycles is introduced. This is the main level and the zero level of nesting. All cycles of the basis belong to the main level. Each of the cycles can additionally have a zero level of nesting in another main cycle for it, if it is nested in the main cycle and not nested in any other cycle from the main cycle. With the right-hand traversal, zero nesting cycles are adjacent to the main cycle and do not have common vertices outside the main cycle. These two properties allowed in each basis cycle sequentially select and exclude from it all its zero nesting cycles, using the symmetric difference operation. It is shown that the rest of the basic cycle is the cycle of the block map cell. The complexity of each step of the proposed algorithm does not exceed the quadratic complexity with respect to the number of vertices of the simple planar graph.","PeriodicalId":42607,"journal":{"name":"Prikladnaya Diskretnaya Matematika","volume":"15 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A direct method for calculating cell cycles of a block map of a simple planar graph\",\"authors\":\"B. Ivanov\",\"doi\":\"10.17223/20710410/58/7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proposed algorithm for calculating the cycles of the cells the simple planar graph block map is an extension of the classical depth-first search algorithm for cycles of the DFS-basis. The key idea of the modification of this algorithm is the strategy of right-hand traversal when passing the graph in depth. The vertex with the minimum coordinate on the OY axis is assigned as the starting vertex in the right-hand traversal. The exit from the initial vertex is performed along the edge with the minimum polar angle. The continuation of the traversal from each next vertex is carried out along an edge with a minimum polar angle relative to the edge along which arrived at the current vertex. A two-level structure of nested cycles is introduced. This is the main level and the zero level of nesting. All cycles of the basis belong to the main level. Each of the cycles can additionally have a zero level of nesting in another main cycle for it, if it is nested in the main cycle and not nested in any other cycle from the main cycle. With the right-hand traversal, zero nesting cycles are adjacent to the main cycle and do not have common vertices outside the main cycle. These two properties allowed in each basis cycle sequentially select and exclude from it all its zero nesting cycles, using the symmetric difference operation. It is shown that the rest of the basic cycle is the cycle of the block map cell. The complexity of each step of the proposed algorithm does not exceed the quadratic complexity with respect to the number of vertices of the simple planar graph.\",\"PeriodicalId\":42607,\"journal\":{\"name\":\"Prikladnaya Diskretnaya Matematika\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Prikladnaya Diskretnaya Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17223/20710410/58/7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prikladnaya Diskretnaya Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17223/20710410/58/7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A direct method for calculating cell cycles of a block map of a simple planar graph
The proposed algorithm for calculating the cycles of the cells the simple planar graph block map is an extension of the classical depth-first search algorithm for cycles of the DFS-basis. The key idea of the modification of this algorithm is the strategy of right-hand traversal when passing the graph in depth. The vertex with the minimum coordinate on the OY axis is assigned as the starting vertex in the right-hand traversal. The exit from the initial vertex is performed along the edge with the minimum polar angle. The continuation of the traversal from each next vertex is carried out along an edge with a minimum polar angle relative to the edge along which arrived at the current vertex. A two-level structure of nested cycles is introduced. This is the main level and the zero level of nesting. All cycles of the basis belong to the main level. Each of the cycles can additionally have a zero level of nesting in another main cycle for it, if it is nested in the main cycle and not nested in any other cycle from the main cycle. With the right-hand traversal, zero nesting cycles are adjacent to the main cycle and do not have common vertices outside the main cycle. These two properties allowed in each basis cycle sequentially select and exclude from it all its zero nesting cycles, using the symmetric difference operation. It is shown that the rest of the basic cycle is the cycle of the block map cell. The complexity of each step of the proposed algorithm does not exceed the quadratic complexity with respect to the number of vertices of the simple planar graph.
期刊介绍:
The scientific journal Prikladnaya Diskretnaya Matematika has been issued since 2008. It was registered by Federal Control Service in the Sphere of Communications and Mass Media (Registration Witness PI № FS 77-33762 in October 16th, in 2008). Prikladnaya Diskretnaya Matematika has been selected for coverage in Clarivate Analytics products and services. It is indexed and abstracted in SCOPUS and WoS Core Collection (Emerging Sources Citation Index). The journal is a quarterly. All the papers to be published in it are obligatorily verified by one or two specialists. The publication in the journal is free of charge and may be in Russian or in English. The topics of the journal are the following: 1.theoretical foundations of applied discrete mathematics – algebraic structures, discrete functions, combinatorial analysis, number theory, mathematical logic, information theory, systems of equations over finite fields and rings; 2.mathematical methods in cryptography – synthesis of cryptosystems, methods for cryptanalysis, pseudorandom generators, appreciation of cryptosystem security, cryptographic protocols, mathematical methods in quantum cryptography; 3.mathematical methods in steganography – synthesis of steganosystems, methods for steganoanalysis, appreciation of steganosystem security; 4.mathematical foundations of computer security – mathematical models for computer system security, mathematical methods for the analysis of the computer system security, mathematical methods for the synthesis of protected computer systems;[...]