奇数线性序关系的中位数及其在群选择问题中的应用

IF 0.2 Q4 MATHEMATICS, APPLIED
Victor N. Nefedov
{"title":"奇数线性序关系的中位数及其在群选择问题中的应用","authors":"Victor N. Nefedov","doi":"10.17223/20710410/57/7","DOIUrl":null,"url":null,"abstract":"We consider the problem of constructing a median for an odd set of linear order relations defined on a finite set A = {a1,a2,..., an}, which is also sought in the class of linear order relations. We arrive at a similar problem when considering some group choice problems. The distance between binary relations is the Hamming distance between their adjacency matrices. In the case under consideration, the binary relation ρ, which has the minimum total distance to the given set of binary relations, is the median for these relations and, moreover, is unique. However, this median is not always transitive (and in this case is neither linear order, nor even a quasi-order), and therefore cannot be taken as a solution to a given problem. However, the median ρ necessarily belongs to the set LA[n] (of linear asymmetric binary relations on A), to which, in particular, all linear orders on A also belong. Some properties of binary relations from LA[n] are investigated. The concepts of “almost optimal” and Δ-optimal relations are introduced, which are linear orders and, at the same time, exact solutions of the stated problem. Algorithms for finding them are given, based on the obtained statements about binary relations from LA[n] and having polynomial computational complexity. An equivalence relation on the set LA[n] is considered, which allows one to divide this set into equivalence classes, the number of which Kn is much less than the number of elements in LA[n]. For example, |LA[5] | = 1024, K5 = 12. Thus, each binary relation from LA[n] is equivalent to exactly one of the Kn representatives of the equivalence classes and, therefore, has its main properties. But then the study of a wide class of problems can be reduced to considering a relatively small set of them. The process of finding the specified set of equivalence class representatives is illustrated for n = 2,3,4, 5. A method for solving the problem posed is also given, using the representation of binary relations in the form of graphs (the method of selecting the minimum sets of contour representatives in the median ρ), which has exponential computational complexity.","PeriodicalId":42607,"journal":{"name":"Prikladnaya Diskretnaya Matematika","volume":"1 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Median for an odd number of linear order relations and its use in group choice problems\",\"authors\":\"Victor N. Nefedov\",\"doi\":\"10.17223/20710410/57/7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of constructing a median for an odd set of linear order relations defined on a finite set A = {a1,a2,..., an}, which is also sought in the class of linear order relations. We arrive at a similar problem when considering some group choice problems. The distance between binary relations is the Hamming distance between their adjacency matrices. In the case under consideration, the binary relation ρ, which has the minimum total distance to the given set of binary relations, is the median for these relations and, moreover, is unique. However, this median is not always transitive (and in this case is neither linear order, nor even a quasi-order), and therefore cannot be taken as a solution to a given problem. However, the median ρ necessarily belongs to the set LA[n] (of linear asymmetric binary relations on A), to which, in particular, all linear orders on A also belong. Some properties of binary relations from LA[n] are investigated. The concepts of “almost optimal” and Δ-optimal relations are introduced, which are linear orders and, at the same time, exact solutions of the stated problem. Algorithms for finding them are given, based on the obtained statements about binary relations from LA[n] and having polynomial computational complexity. An equivalence relation on the set LA[n] is considered, which allows one to divide this set into equivalence classes, the number of which Kn is much less than the number of elements in LA[n]. For example, |LA[5] | = 1024, K5 = 12. Thus, each binary relation from LA[n] is equivalent to exactly one of the Kn representatives of the equivalence classes and, therefore, has its main properties. But then the study of a wide class of problems can be reduced to considering a relatively small set of them. The process of finding the specified set of equivalence class representatives is illustrated for n = 2,3,4, 5. A method for solving the problem posed is also given, using the representation of binary relations in the form of graphs (the method of selecting the minimum sets of contour representatives in the median ρ), which has exponential computational complexity.\",\"PeriodicalId\":42607,\"journal\":{\"name\":\"Prikladnaya Diskretnaya Matematika\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Prikladnaya Diskretnaya Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17223/20710410/57/7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prikladnaya Diskretnaya Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17223/20710410/57/7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

考虑在有限集合a = {a1,a2,…上定义的线性序关系奇集的中值构造问题。, an},这也是在线性序关系类中寻求的。在考虑一些群体选择问题时,我们也遇到了类似的问题。二元关系之间的距离是它们邻接矩阵之间的汉明距离。在考虑的情况下,二元关系ρ是这些关系的中值,它与给定的二元关系集的总距离最小,而且是唯一的。然而,这个中值并不总是可传递的(在这种情况下既不是线性阶,甚至也不是准阶),因此不能作为给定问题的解。然而,中位数ρ必然属于(A上的线性非对称二元关系的)集合LA[n],特别地,A上的所有线性阶也属于这个集合。研究了LA[n]中二元关系的一些性质。引入了“几乎最优”和Δ-optimal关系的概念,它们是线性阶,同时也是所述问题的精确解。基于从LA[n]中得到的关于二元关系的表述,并具有多项式的计算复杂度,给出了寻找它们的算法。考虑集合LA[n]上的等价关系,可以将集合划分为等价类,等价类的个数Kn远小于集合LA[n]中的元素个数。例如,|LA[5] | = 1024, K5 = 12。因此,LA[n]中的每个二元关系恰好等价于等价类的Kn个代表中的一个,因此具有其主要性质。但是,对大量问题的研究可以简化为考虑相对较小的问题集。给出了求n = 2,3,4,5的等价类代表的指定集合的过程。本文还给出了一种用图的形式来表示二元关系的方法(在中位数ρ中选择轮廓表示的最小集合的方法),该方法具有指数级的计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Median for an odd number of linear order relations and its use in group choice problems
We consider the problem of constructing a median for an odd set of linear order relations defined on a finite set A = {a1,a2,..., an}, which is also sought in the class of linear order relations. We arrive at a similar problem when considering some group choice problems. The distance between binary relations is the Hamming distance between their adjacency matrices. In the case under consideration, the binary relation ρ, which has the minimum total distance to the given set of binary relations, is the median for these relations and, moreover, is unique. However, this median is not always transitive (and in this case is neither linear order, nor even a quasi-order), and therefore cannot be taken as a solution to a given problem. However, the median ρ necessarily belongs to the set LA[n] (of linear asymmetric binary relations on A), to which, in particular, all linear orders on A also belong. Some properties of binary relations from LA[n] are investigated. The concepts of “almost optimal” and Δ-optimal relations are introduced, which are linear orders and, at the same time, exact solutions of the stated problem. Algorithms for finding them are given, based on the obtained statements about binary relations from LA[n] and having polynomial computational complexity. An equivalence relation on the set LA[n] is considered, which allows one to divide this set into equivalence classes, the number of which Kn is much less than the number of elements in LA[n]. For example, |LA[5] | = 1024, K5 = 12. Thus, each binary relation from LA[n] is equivalent to exactly one of the Kn representatives of the equivalence classes and, therefore, has its main properties. But then the study of a wide class of problems can be reduced to considering a relatively small set of them. The process of finding the specified set of equivalence class representatives is illustrated for n = 2,3,4, 5. A method for solving the problem posed is also given, using the representation of binary relations in the form of graphs (the method of selecting the minimum sets of contour representatives in the median ρ), which has exponential computational complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Prikladnaya Diskretnaya Matematika
Prikladnaya Diskretnaya Matematika MATHEMATICS, APPLIED-
CiteScore
0.60
自引率
50.00%
发文量
0
期刊介绍: The scientific journal Prikladnaya Diskretnaya Matematika has been issued since 2008. It was registered by Federal Control Service in the Sphere of Communications and Mass Media (Registration Witness PI № FS 77-33762 in October 16th, in 2008). Prikladnaya Diskretnaya Matematika has been selected for coverage in Clarivate Analytics products and services. It is indexed and abstracted in SCOPUS and WoS Core Collection (Emerging Sources Citation Index). The journal is a quarterly. All the papers to be published in it are obligatorily verified by one or two specialists. The publication in the journal is free of charge and may be in Russian or in English. The topics of the journal are the following: 1.theoretical foundations of applied discrete mathematics – algebraic structures, discrete functions, combinatorial analysis, number theory, mathematical logic, information theory, systems of equations over finite fields and rings; 2.mathematical methods in cryptography – synthesis of cryptosystems, methods for cryptanalysis, pseudorandom generators, appreciation of cryptosystem security, cryptographic protocols, mathematical methods in quantum cryptography; 3.mathematical methods in steganography – synthesis of steganosystems, methods for steganoanalysis, appreciation of steganosystem security; 4.mathematical foundations of computer security – mathematical models for computer system security, mathematical methods for the analysis of the computer system security, mathematical methods for the synthesis of protected computer systems;[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信