{"title":"图聚类有界问题的一般复杂度","authors":"A. Rybalov","doi":"10.17223/20710410/57/6","DOIUrl":null,"url":null,"abstract":"Generic-case approach to algorithmic problems studies behavior of an algorithm on typical (almost all) inputs and ignores the rest of inputs. In this paper, we study the generic complexity of the bounded problem of graphs clustering. In this problem the structure of objects relations is presented as a graph: vertices correspond to objects, and edges connect similar objects. It is required to divide the set of objects into bounded disjoint groups (clusters) to minimize the number of connections between clusters and the number of missing links within clusters. We have constructed a subproblem of this problem, for which there is no polynomial generic algorithm provided P ≠ NP and P = BPP. To prove the theorem, we use the method of generic amplification, which allows to construct generically hard problems from the problems hard in the classical sense. The main component of this method is the cloning technique, which merges the inputs of a problem together into sufficiently large sets of equivalent inputs. Equivalence is understood in the sense that the problem for them is solved in a similar way.","PeriodicalId":42607,"journal":{"name":"Prikladnaya Diskretnaya Matematika","volume":"1 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The generic complexity of the bounded problem of graphs clustering\",\"authors\":\"A. Rybalov\",\"doi\":\"10.17223/20710410/57/6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generic-case approach to algorithmic problems studies behavior of an algorithm on typical (almost all) inputs and ignores the rest of inputs. In this paper, we study the generic complexity of the bounded problem of graphs clustering. In this problem the structure of objects relations is presented as a graph: vertices correspond to objects, and edges connect similar objects. It is required to divide the set of objects into bounded disjoint groups (clusters) to minimize the number of connections between clusters and the number of missing links within clusters. We have constructed a subproblem of this problem, for which there is no polynomial generic algorithm provided P ≠ NP and P = BPP. To prove the theorem, we use the method of generic amplification, which allows to construct generically hard problems from the problems hard in the classical sense. The main component of this method is the cloning technique, which merges the inputs of a problem together into sufficiently large sets of equivalent inputs. Equivalence is understood in the sense that the problem for them is solved in a similar way.\",\"PeriodicalId\":42607,\"journal\":{\"name\":\"Prikladnaya Diskretnaya Matematika\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Prikladnaya Diskretnaya Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17223/20710410/57/6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prikladnaya Diskretnaya Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17223/20710410/57/6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The generic complexity of the bounded problem of graphs clustering
Generic-case approach to algorithmic problems studies behavior of an algorithm on typical (almost all) inputs and ignores the rest of inputs. In this paper, we study the generic complexity of the bounded problem of graphs clustering. In this problem the structure of objects relations is presented as a graph: vertices correspond to objects, and edges connect similar objects. It is required to divide the set of objects into bounded disjoint groups (clusters) to minimize the number of connections between clusters and the number of missing links within clusters. We have constructed a subproblem of this problem, for which there is no polynomial generic algorithm provided P ≠ NP and P = BPP. To prove the theorem, we use the method of generic amplification, which allows to construct generically hard problems from the problems hard in the classical sense. The main component of this method is the cloning technique, which merges the inputs of a problem together into sufficiently large sets of equivalent inputs. Equivalence is understood in the sense that the problem for them is solved in a similar way.
期刊介绍:
The scientific journal Prikladnaya Diskretnaya Matematika has been issued since 2008. It was registered by Federal Control Service in the Sphere of Communications and Mass Media (Registration Witness PI № FS 77-33762 in October 16th, in 2008). Prikladnaya Diskretnaya Matematika has been selected for coverage in Clarivate Analytics products and services. It is indexed and abstracted in SCOPUS and WoS Core Collection (Emerging Sources Citation Index). The journal is a quarterly. All the papers to be published in it are obligatorily verified by one or two specialists. The publication in the journal is free of charge and may be in Russian or in English. The topics of the journal are the following: 1.theoretical foundations of applied discrete mathematics – algebraic structures, discrete functions, combinatorial analysis, number theory, mathematical logic, information theory, systems of equations over finite fields and rings; 2.mathematical methods in cryptography – synthesis of cryptosystems, methods for cryptanalysis, pseudorandom generators, appreciation of cryptosystem security, cryptographic protocols, mathematical methods in quantum cryptography; 3.mathematical methods in steganography – synthesis of steganosystems, methods for steganoanalysis, appreciation of steganosystem security; 4.mathematical foundations of computer security – mathematical models for computer system security, mathematical methods for the analysis of the computer system security, mathematical methods for the synthesis of protected computer systems;[...]