关于平稳离散随机序列中重复次数分布的正态逼近率

IF 0.2 Q4 MATHEMATICS, APPLIED
V. Mikhailov, N. Mezhennaya
{"title":"关于平稳离散随机序列中重复次数分布的正态逼近率","authors":"V. Mikhailov, N. Mezhennaya","doi":"10.17223/20710410/58/2","DOIUrl":null,"url":null,"abstract":"The paper presents the problem of asymptotic normality of the number of r-fold repetitions of characters in a segment of a (strictly) stationary discrete random sequence on the set {1, 2,..., N} with the uniformly strong mixing property. It is shown that in the case when the uniformly strong mixing coefficient φ(t) for an arbitrarily given α > 0 decreases as t-6-α, then the distance in the uniform metric between the distribution function of the number of repetitions and the distribution function of the standard normal law decreases at a rate of O(n- δ) with increasing sequence length n for any α ∈ (0; α (32 + 4α )-1)).","PeriodicalId":42607,"journal":{"name":"Prikladnaya Diskretnaya Matematika","volume":"1 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"About the rate of normal approximation for the distribution of the number of repetitions in a stationary discrete random sequence\",\"authors\":\"V. Mikhailov, N. Mezhennaya\",\"doi\":\"10.17223/20710410/58/2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents the problem of asymptotic normality of the number of r-fold repetitions of characters in a segment of a (strictly) stationary discrete random sequence on the set {1, 2,..., N} with the uniformly strong mixing property. It is shown that in the case when the uniformly strong mixing coefficient φ(t) for an arbitrarily given α > 0 decreases as t-6-α, then the distance in the uniform metric between the distribution function of the number of repetitions and the distribution function of the standard normal law decreases at a rate of O(n- δ) with increasing sequence length n for any α ∈ (0; α (32 + 4α )-1)).\",\"PeriodicalId\":42607,\"journal\":{\"name\":\"Prikladnaya Diskretnaya Matematika\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Prikladnaya Diskretnaya Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17223/20710410/58/2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prikladnaya Diskretnaya Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17223/20710410/58/2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了集{1,2,…]上的(严格)平稳离散随机序列段中r-fold重复字符个数的渐近正态性问题。, N}具有均匀的强混合性能。结果表明,当任意给定α > 0的均匀强混合系数φ(t)随t-6-α减小时,则对于任意α∈(0),重复次数分布函数与标准正态律分布函数在均匀度规中的距离随序列长度n的增加以O(n- δ)的速率减小;α (32 + 4α)-1))
本文章由计算机程序翻译,如有差异,请以英文原文为准。
About the rate of normal approximation for the distribution of the number of repetitions in a stationary discrete random sequence
The paper presents the problem of asymptotic normality of the number of r-fold repetitions of characters in a segment of a (strictly) stationary discrete random sequence on the set {1, 2,..., N} with the uniformly strong mixing property. It is shown that in the case when the uniformly strong mixing coefficient φ(t) for an arbitrarily given α > 0 decreases as t-6-α, then the distance in the uniform metric between the distribution function of the number of repetitions and the distribution function of the standard normal law decreases at a rate of O(n- δ) with increasing sequence length n for any α ∈ (0; α (32 + 4α )-1)).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Prikladnaya Diskretnaya Matematika
Prikladnaya Diskretnaya Matematika MATHEMATICS, APPLIED-
CiteScore
0.60
自引率
50.00%
发文量
0
期刊介绍: The scientific journal Prikladnaya Diskretnaya Matematika has been issued since 2008. It was registered by Federal Control Service in the Sphere of Communications and Mass Media (Registration Witness PI № FS 77-33762 in October 16th, in 2008). Prikladnaya Diskretnaya Matematika has been selected for coverage in Clarivate Analytics products and services. It is indexed and abstracted in SCOPUS and WoS Core Collection (Emerging Sources Citation Index). The journal is a quarterly. All the papers to be published in it are obligatorily verified by one or two specialists. The publication in the journal is free of charge and may be in Russian or in English. The topics of the journal are the following: 1.theoretical foundations of applied discrete mathematics – algebraic structures, discrete functions, combinatorial analysis, number theory, mathematical logic, information theory, systems of equations over finite fields and rings; 2.mathematical methods in cryptography – synthesis of cryptosystems, methods for cryptanalysis, pseudorandom generators, appreciation of cryptosystem security, cryptographic protocols, mathematical methods in quantum cryptography; 3.mathematical methods in steganography – synthesis of steganosystems, methods for steganoanalysis, appreciation of steganosystem security; 4.mathematical foundations of computer security – mathematical models for computer system security, mathematical methods for the analysis of the computer system security, mathematical methods for the synthesis of protected computer systems;[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信