{"title":"利用广义构造获得具有给定密码性质的置换的启发式算法","authors":"Maria A. Kovrizhnykh, D. Fomin","doi":"10.17223/20710410/57/1","DOIUrl":null,"url":null,"abstract":"In this paper, we study a generalized construction of (2m, 2m)-functions using monomial and arbitrary m-bit permutations as constituent elements. We investigate the possibility of constructing bijective vectorial Boolean functions (permutations) with specified cryptographic properties that ensure the resistance of encryption algorithms to linear and differential methods of cryptographic analysis. We propose a heuristic algorithm for obtaining permutations with the given nonlinearity and differential uniformity based on the generalized construction. For this purpose, we look for auxiliary permutations of a lower dimension using the ideas of the genetic algorithm, spectral-linear, and spectral-difference methods. In the case of m = 4, the proposed algorithm consists of iterative multiplication of the initial randomly generated 4-bit permutations by transposition, selecting the best ones in nonlinearity, the differential uniformity, and the corresponding values in the linear and differential spectra among the obtained 8-bit permutations. We show how to optimize the calculation of cryptographic properties at each iteration of the algorithm. Experimental studies of the most interesting, from a practical point of view, 8-bit permutations have shown that it is possible to construct 6-uniform permutations with nonlinearity 108.","PeriodicalId":42607,"journal":{"name":"Prikladnaya Diskretnaya Matematika","volume":"34 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heuristic algorithm for obtaining permutations with given cryptographic properties using a generalized construction\",\"authors\":\"Maria A. Kovrizhnykh, D. Fomin\",\"doi\":\"10.17223/20710410/57/1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study a generalized construction of (2m, 2m)-functions using monomial and arbitrary m-bit permutations as constituent elements. We investigate the possibility of constructing bijective vectorial Boolean functions (permutations) with specified cryptographic properties that ensure the resistance of encryption algorithms to linear and differential methods of cryptographic analysis. We propose a heuristic algorithm for obtaining permutations with the given nonlinearity and differential uniformity based on the generalized construction. For this purpose, we look for auxiliary permutations of a lower dimension using the ideas of the genetic algorithm, spectral-linear, and spectral-difference methods. In the case of m = 4, the proposed algorithm consists of iterative multiplication of the initial randomly generated 4-bit permutations by transposition, selecting the best ones in nonlinearity, the differential uniformity, and the corresponding values in the linear and differential spectra among the obtained 8-bit permutations. We show how to optimize the calculation of cryptographic properties at each iteration of the algorithm. Experimental studies of the most interesting, from a practical point of view, 8-bit permutations have shown that it is possible to construct 6-uniform permutations with nonlinearity 108.\",\"PeriodicalId\":42607,\"journal\":{\"name\":\"Prikladnaya Diskretnaya Matematika\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Prikladnaya Diskretnaya Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17223/20710410/57/1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prikladnaya Diskretnaya Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17223/20710410/57/1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Heuristic algorithm for obtaining permutations with given cryptographic properties using a generalized construction
In this paper, we study a generalized construction of (2m, 2m)-functions using monomial and arbitrary m-bit permutations as constituent elements. We investigate the possibility of constructing bijective vectorial Boolean functions (permutations) with specified cryptographic properties that ensure the resistance of encryption algorithms to linear and differential methods of cryptographic analysis. We propose a heuristic algorithm for obtaining permutations with the given nonlinearity and differential uniformity based on the generalized construction. For this purpose, we look for auxiliary permutations of a lower dimension using the ideas of the genetic algorithm, spectral-linear, and spectral-difference methods. In the case of m = 4, the proposed algorithm consists of iterative multiplication of the initial randomly generated 4-bit permutations by transposition, selecting the best ones in nonlinearity, the differential uniformity, and the corresponding values in the linear and differential spectra among the obtained 8-bit permutations. We show how to optimize the calculation of cryptographic properties at each iteration of the algorithm. Experimental studies of the most interesting, from a practical point of view, 8-bit permutations have shown that it is possible to construct 6-uniform permutations with nonlinearity 108.
期刊介绍:
The scientific journal Prikladnaya Diskretnaya Matematika has been issued since 2008. It was registered by Federal Control Service in the Sphere of Communications and Mass Media (Registration Witness PI № FS 77-33762 in October 16th, in 2008). Prikladnaya Diskretnaya Matematika has been selected for coverage in Clarivate Analytics products and services. It is indexed and abstracted in SCOPUS and WoS Core Collection (Emerging Sources Citation Index). The journal is a quarterly. All the papers to be published in it are obligatorily verified by one or two specialists. The publication in the journal is free of charge and may be in Russian or in English. The topics of the journal are the following: 1.theoretical foundations of applied discrete mathematics – algebraic structures, discrete functions, combinatorial analysis, number theory, mathematical logic, information theory, systems of equations over finite fields and rings; 2.mathematical methods in cryptography – synthesis of cryptosystems, methods for cryptanalysis, pseudorandom generators, appreciation of cryptosystem security, cryptographic protocols, mathematical methods in quantum cryptography; 3.mathematical methods in steganography – synthesis of steganosystems, methods for steganoanalysis, appreciation of steganosystem security; 4.mathematical foundations of computer security – mathematical models for computer system security, mathematical methods for the analysis of the computer system security, mathematical methods for the synthesis of protected computer systems;[...]