动态导向(FD)模拟在开发新设计蛋白质中的作用

Şakir Altinsoy, Noor Saleh, Sevilay Özer
{"title":"动态导向(FD)模拟在开发新设计蛋白质中的作用","authors":"Şakir Altinsoy, Noor Saleh, Sevilay Özer","doi":"10.19113/sdufenbed.1164720","DOIUrl":null,"url":null,"abstract":"Amputees face several gait deficits due to their mechanically passive prostheses' lack of control and power. Of crucial importance among these deficits are those related to balance, as falls and a fear of falling can cause an avoidance of activity that leads to further debilitation. A transfemoral an artificial limb replaces a missing leg above the knee. A transfemoral prosthesis consists of a socket, knee, shank, foot, and mechanism for the suspension. The current 3D neuromuscular model of a healthy person in this study is adjusted to depict a transfemoral amputee with a 3R60. The model is simulated by Matlab 2019b Simulink program with a walking speed of 0.9 m/s and 1.2 m/s. The model's performance is assessed by comparing the distinctions between the healthy model and the amputee to the literature results. The amputee gait simulated is in keeping with the literature, particularly at speeds of 1.2 m/s. The oscillations of the model in the coronal plane are 0.9 m/s, indicating that balance is difficult to maintain. A case study was also conducted with a gyroscope control moment in the prosthetic shank on fall prevention. The gyroscope control moment enhances flexing the knee and extending it to prevent a drop. The step was more balanced with the extra control time whirligig at 1.2 m/s.","PeriodicalId":30858,"journal":{"name":"Suleyman Demirel Universitesi Fen Bilimleri Enstitusu Dergisi","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Yeni Diz Protezleri Geliştirmede Dinamik Yönlendirme (FD) Simülasyonunun Rolü\",\"authors\":\"Şakir Altinsoy, Noor Saleh, Sevilay Özer\",\"doi\":\"10.19113/sdufenbed.1164720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Amputees face several gait deficits due to their mechanically passive prostheses' lack of control and power. Of crucial importance among these deficits are those related to balance, as falls and a fear of falling can cause an avoidance of activity that leads to further debilitation. A transfemoral an artificial limb replaces a missing leg above the knee. A transfemoral prosthesis consists of a socket, knee, shank, foot, and mechanism for the suspension. The current 3D neuromuscular model of a healthy person in this study is adjusted to depict a transfemoral amputee with a 3R60. The model is simulated by Matlab 2019b Simulink program with a walking speed of 0.9 m/s and 1.2 m/s. The model's performance is assessed by comparing the distinctions between the healthy model and the amputee to the literature results. The amputee gait simulated is in keeping with the literature, particularly at speeds of 1.2 m/s. The oscillations of the model in the coronal plane are 0.9 m/s, indicating that balance is difficult to maintain. A case study was also conducted with a gyroscope control moment in the prosthetic shank on fall prevention. The gyroscope control moment enhances flexing the knee and extending it to prevent a drop. The step was more balanced with the extra control time whirligig at 1.2 m/s.\",\"PeriodicalId\":30858,\"journal\":{\"name\":\"Suleyman Demirel Universitesi Fen Bilimleri Enstitusu Dergisi\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Suleyman Demirel Universitesi Fen Bilimleri Enstitusu Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19113/sdufenbed.1164720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Suleyman Demirel Universitesi Fen Bilimleri Enstitusu Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19113/sdufenbed.1164720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于机械被动假肢缺乏控制和力量,截肢者面临着一些步态缺陷。这些缺陷中至关重要的是与平衡有关的缺陷,因为跌倒和害怕跌倒会导致避免活动,从而导致进一步的衰弱。经股假肢代替膝盖以上缺失的一条腿。经股假体由窝、膝关节、小腿、足和悬挂机构组成。在本研究中,对健康人的当前3D神经肌肉模型进行了调整,以描述具有3R60的经股截肢者。采用Matlab 2019b Simulink程序对模型进行仿真,步行速度分别为0.9 m/s和1.2 m/s。通过比较健康模型和截肢者与文献结果之间的差异来评估模型的性能。模拟的截肢者步态与文献一致,特别是在1.2米/秒的速度下。模型在冠状面上的振荡为0.9 m/s,表明平衡难以维持。采用陀螺仪控制力矩对假体小腿的防摔效果进行了实例研究。陀螺仪的控制力矩增强了膝盖的弯曲和伸展,以防止跌落。额外控制时间为1.2 m/s时,步进更加平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Yeni Diz Protezleri Geliştirmede Dinamik Yönlendirme (FD) Simülasyonunun Rolü
Amputees face several gait deficits due to their mechanically passive prostheses' lack of control and power. Of crucial importance among these deficits are those related to balance, as falls and a fear of falling can cause an avoidance of activity that leads to further debilitation. A transfemoral an artificial limb replaces a missing leg above the knee. A transfemoral prosthesis consists of a socket, knee, shank, foot, and mechanism for the suspension. The current 3D neuromuscular model of a healthy person in this study is adjusted to depict a transfemoral amputee with a 3R60. The model is simulated by Matlab 2019b Simulink program with a walking speed of 0.9 m/s and 1.2 m/s. The model's performance is assessed by comparing the distinctions between the healthy model and the amputee to the literature results. The amputee gait simulated is in keeping with the literature, particularly at speeds of 1.2 m/s. The oscillations of the model in the coronal plane are 0.9 m/s, indicating that balance is difficult to maintain. A case study was also conducted with a gyroscope control moment in the prosthetic shank on fall prevention. The gyroscope control moment enhances flexing the knee and extending it to prevent a drop. The step was more balanced with the extra control time whirligig at 1.2 m/s.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
37
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信