基于最小二乘法的准保角网格变形

Gang Xu, Lishan Deng, Wenbing Ge, K. Hui, Guozhen Wang, Yi-gang Wang
{"title":"基于最小二乘法的准保角网格变形","authors":"Gang Xu, Lishan Deng, Wenbing Ge, K. Hui, Guozhen Wang, Yi-gang Wang","doi":"10.1631/jzus.C1400103","DOIUrl":null,"url":null,"abstract":"We propose an angle-based mesh representation, which is invariant under translation, rotation, and uniform scaling, to encode the geometric details of a triangular mesh. Angle-based mesh representation consists of angle quantities defined on the mesh, from which the mesh can be reconstructed uniquely up to translation, rotation, and uniform scaling. The reconstruction process requires solving three sparse linear systems: the first system encodes the length of edges between vertices on the mesh, the second system encodes the relationship of local frames between two adjacent vertices on the mesh, and the third system defines the position of the vertices via the edge length and the local frames. From this angle-based mesh representation, we propose a quasi-angle-preserving mesh deformation system with the least-squares approach via handle translation, rotation, and uniform scaling. Several detail-preserving mesh editing examples are presented to demonstrate the effectiveness of the proposed method.","PeriodicalId":49947,"journal":{"name":"Journal of Zhejiang University-Science C-Computers & Electronics","volume":"15 1","pages":"754 - 763"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1631/jzus.C1400103","citationCount":"0","resultStr":"{\"title\":\"Quasi-angle-preserving mesh deformation using the least-squares approach\",\"authors\":\"Gang Xu, Lishan Deng, Wenbing Ge, K. Hui, Guozhen Wang, Yi-gang Wang\",\"doi\":\"10.1631/jzus.C1400103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an angle-based mesh representation, which is invariant under translation, rotation, and uniform scaling, to encode the geometric details of a triangular mesh. Angle-based mesh representation consists of angle quantities defined on the mesh, from which the mesh can be reconstructed uniquely up to translation, rotation, and uniform scaling. The reconstruction process requires solving three sparse linear systems: the first system encodes the length of edges between vertices on the mesh, the second system encodes the relationship of local frames between two adjacent vertices on the mesh, and the third system defines the position of the vertices via the edge length and the local frames. From this angle-based mesh representation, we propose a quasi-angle-preserving mesh deformation system with the least-squares approach via handle translation, rotation, and uniform scaling. Several detail-preserving mesh editing examples are presented to demonstrate the effectiveness of the proposed method.\",\"PeriodicalId\":49947,\"journal\":{\"name\":\"Journal of Zhejiang University-Science C-Computers & Electronics\",\"volume\":\"15 1\",\"pages\":\"754 - 763\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1631/jzus.C1400103\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Zhejiang University-Science C-Computers & Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1631/jzus.C1400103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zhejiang University-Science C-Computers & Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1631/jzus.C1400103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种基于角度的网格表示,它在平移、旋转和均匀缩放下是不变的,以编码三角形网格的几何细节。基于角度的网格表示由定义在网格上的角度量组成,从这些角度量可以唯一地重构网格,直至平移、旋转和均匀缩放。重构过程需要求解三个稀疏线性系统:第一个系统对网格上顶点之间的边长度进行编码,第二个系统对网格上两个相邻顶点之间的局部帧关系进行编码,第三个系统通过边缘长度和局部帧定义顶点的位置。基于这种基于角度的网格表示,我们提出了一种基于最小二乘方法的准角度保持网格变形系统,该系统通过手柄平移、旋转和均匀缩放。最后给出了若干保持细节的网格编辑实例,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasi-angle-preserving mesh deformation using the least-squares approach
We propose an angle-based mesh representation, which is invariant under translation, rotation, and uniform scaling, to encode the geometric details of a triangular mesh. Angle-based mesh representation consists of angle quantities defined on the mesh, from which the mesh can be reconstructed uniquely up to translation, rotation, and uniform scaling. The reconstruction process requires solving three sparse linear systems: the first system encodes the length of edges between vertices on the mesh, the second system encodes the relationship of local frames between two adjacent vertices on the mesh, and the third system defines the position of the vertices via the edge length and the local frames. From this angle-based mesh representation, we propose a quasi-angle-preserving mesh deformation system with the least-squares approach via handle translation, rotation, and uniform scaling. Several detail-preserving mesh editing examples are presented to demonstrate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
2.66667 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信