基于不完全惯性传感器信息的惯性测量单元-摄像机标定

Hong Liu, Yulong Zhou, Zhaopeng Gu
{"title":"基于不完全惯性传感器信息的惯性测量单元-摄像机标定","authors":"Hong Liu, Yulong Zhou, Zhaopeng Gu","doi":"10.1631/jzus.C1400038","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the problem of estimating the relative orientation between an inertial measurement unit (IMU) and a camera. Unlike most existing IMU-camera calibrations, the main challenge in this paper is that the information output from the IMU is incomplete. For example, only two tilt information can be read from the gravity sensor of a smart phone. Despite incomplete inertial information, there are strong restrictions between the IMU and camera coordinate systems. This paper addresses the incomplete information based IMU-camera calibration problem by exploiting the intrinsic restrictions among the coordinate transformations. First, the IMU transformation between two poses is formulated with the unknown IMU information. Then the defective IMU information is restored using the complementary visual information. Finally, the Levenberg-Marquardt (LM) algorithm is applied to estimate the optimal calibration result in noisy environments. Experiments on both synthetic and real data show the validity and robustness of our algorithm.","PeriodicalId":49947,"journal":{"name":"Journal of Zhejiang University-Science C-Computers & Electronics","volume":"15 1","pages":"999 - 1008"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1631/jzus.C1400038","citationCount":"1","resultStr":"{\"title\":\"Inertial measurement unit-camera calibration based on incomplete inertial sensor information\",\"authors\":\"Hong Liu, Yulong Zhou, Zhaopeng Gu\",\"doi\":\"10.1631/jzus.C1400038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the problem of estimating the relative orientation between an inertial measurement unit (IMU) and a camera. Unlike most existing IMU-camera calibrations, the main challenge in this paper is that the information output from the IMU is incomplete. For example, only two tilt information can be read from the gravity sensor of a smart phone. Despite incomplete inertial information, there are strong restrictions between the IMU and camera coordinate systems. This paper addresses the incomplete information based IMU-camera calibration problem by exploiting the intrinsic restrictions among the coordinate transformations. First, the IMU transformation between two poses is formulated with the unknown IMU information. Then the defective IMU information is restored using the complementary visual information. Finally, the Levenberg-Marquardt (LM) algorithm is applied to estimate the optimal calibration result in noisy environments. Experiments on both synthetic and real data show the validity and robustness of our algorithm.\",\"PeriodicalId\":49947,\"journal\":{\"name\":\"Journal of Zhejiang University-Science C-Computers & Electronics\",\"volume\":\"15 1\",\"pages\":\"999 - 1008\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1631/jzus.C1400038\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Zhejiang University-Science C-Computers & Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1631/jzus.C1400038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zhejiang University-Science C-Computers & Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1631/jzus.C1400038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了惯性测量单元(IMU)与相机之间的相对方位估计问题。与大多数现有的IMU相机校准不同,本文的主要挑战是IMU输出的信息不完整。例如,智能手机的重力传感器只能读取两个倾斜信息。尽管惯性信息不完全,但IMU和相机坐标系之间有很强的限制。利用坐标变换之间的内在约束,解决了基于不完全信息的imu摄像机标定问题。首先,利用未知的IMU信息建立两个姿态间的IMU变换;然后利用互补的视觉信息对IMU缺陷信息进行恢复。最后,应用Levenberg-Marquardt (LM)算法估计噪声环境下的最优标定结果。在合成数据和实际数据上的实验表明了该算法的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inertial measurement unit-camera calibration based on incomplete inertial sensor information
This paper is concerned with the problem of estimating the relative orientation between an inertial measurement unit (IMU) and a camera. Unlike most existing IMU-camera calibrations, the main challenge in this paper is that the information output from the IMU is incomplete. For example, only two tilt information can be read from the gravity sensor of a smart phone. Despite incomplete inertial information, there are strong restrictions between the IMU and camera coordinate systems. This paper addresses the incomplete information based IMU-camera calibration problem by exploiting the intrinsic restrictions among the coordinate transformations. First, the IMU transformation between two poses is formulated with the unknown IMU information. Then the defective IMU information is restored using the complementary visual information. Finally, the Levenberg-Marquardt (LM) algorithm is applied to estimate the optimal calibration result in noisy environments. Experiments on both synthetic and real data show the validity and robustness of our algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
2.66667 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信