一种新的x射线脉冲星信号最大似然相位估计方法

Hua Zhang, Luejun Xu, Yang-he Shen, Rong Jiao, Jing-rong Sun
{"title":"一种新的x射线脉冲星信号最大似然相位估计方法","authors":"Hua Zhang, Luejun Xu, Yang-he Shen, Rong Jiao, Jing-rong Sun","doi":"10.1631/jzus.C1300347","DOIUrl":null,"url":null,"abstract":"X-ray pulsar navigation (XPNAV) is an attractive method for autonomous navigation of deep space in the future. Currently, techniques for estimating the phase of X-ray pulsar radiation involve the maximization of the general non-convex object functions based on the average profile from the epoch folding method. This results in the suppression of useful information and highly complex computation. In this paper, a new maximum likelihood (ML) phase estimation method that directly utilizes the measured time of arrivals (TOAs) is presented. The X-ray pulsar radiation will be treated as a cyclo-stationary process and the TOAs of the photons in a period will be redefined as a new process, whose probability distribution function is the normalized standard profile of the pulsar. We demonstrate that the new process is equivalent to the generally used Poisson model. Then, the phase estimation problem is recast as a cyclic shift parameter estimation under the ML estimation, and we also put forward a parallel ML estimation method to improve the ML solution. Numerical simulation results show that the estimator described here presents a higher precision and reduces the computational complexity compared with currently used estimators.","PeriodicalId":49947,"journal":{"name":"Journal of Zhejiang University-Science C-Computers & Electronics","volume":"15 1","pages":"458 - 469"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1631/jzus.C1300347","citationCount":"10","resultStr":"{\"title\":\"A new maximum-likelihood phase estimation method for X-ray pulsar signals\",\"authors\":\"Hua Zhang, Luejun Xu, Yang-he Shen, Rong Jiao, Jing-rong Sun\",\"doi\":\"10.1631/jzus.C1300347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"X-ray pulsar navigation (XPNAV) is an attractive method for autonomous navigation of deep space in the future. Currently, techniques for estimating the phase of X-ray pulsar radiation involve the maximization of the general non-convex object functions based on the average profile from the epoch folding method. This results in the suppression of useful information and highly complex computation. In this paper, a new maximum likelihood (ML) phase estimation method that directly utilizes the measured time of arrivals (TOAs) is presented. The X-ray pulsar radiation will be treated as a cyclo-stationary process and the TOAs of the photons in a period will be redefined as a new process, whose probability distribution function is the normalized standard profile of the pulsar. We demonstrate that the new process is equivalent to the generally used Poisson model. Then, the phase estimation problem is recast as a cyclic shift parameter estimation under the ML estimation, and we also put forward a parallel ML estimation method to improve the ML solution. Numerical simulation results show that the estimator described here presents a higher precision and reduces the computational complexity compared with currently used estimators.\",\"PeriodicalId\":49947,\"journal\":{\"name\":\"Journal of Zhejiang University-Science C-Computers & Electronics\",\"volume\":\"15 1\",\"pages\":\"458 - 469\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1631/jzus.C1300347\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Zhejiang University-Science C-Computers & Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1631/jzus.C1300347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zhejiang University-Science C-Computers & Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1631/jzus.C1300347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

x射线脉冲星导航(XPNAV)是未来深空自主导航的一种有吸引力的方法。目前,估计x射线脉冲星辐射相位的技术涉及基于历元折叠法的平均剖面的一般非凸目标函数的最大化。这导致了有用信息的抑制和高度复杂的计算。本文提出了一种直接利用实测到达时间(TOAs)的最大似然相位估计方法。将x射线脉冲星辐射视为一个循环平稳过程,将光子在一个周期内的toa重新定义为一个新的过程,其概率分布函数为脉冲星的归一化标准剖面。我们证明了新过程等价于一般使用的泊松模型。然后,将相位估计问题重构为ML估计下的循环移位参数估计,并提出了一种并行ML估计方法来改进ML解。数值仿真结果表明,与现有的估计器相比,本文所描述的估计器具有更高的精度,并降低了计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new maximum-likelihood phase estimation method for X-ray pulsar signals
X-ray pulsar navigation (XPNAV) is an attractive method for autonomous navigation of deep space in the future. Currently, techniques for estimating the phase of X-ray pulsar radiation involve the maximization of the general non-convex object functions based on the average profile from the epoch folding method. This results in the suppression of useful information and highly complex computation. In this paper, a new maximum likelihood (ML) phase estimation method that directly utilizes the measured time of arrivals (TOAs) is presented. The X-ray pulsar radiation will be treated as a cyclo-stationary process and the TOAs of the photons in a period will be redefined as a new process, whose probability distribution function is the normalized standard profile of the pulsar. We demonstrate that the new process is equivalent to the generally used Poisson model. Then, the phase estimation problem is recast as a cyclic shift parameter estimation under the ML estimation, and we also put forward a parallel ML estimation method to improve the ML solution. Numerical simulation results show that the estimator described here presents a higher precision and reduces the computational complexity compared with currently used estimators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
2.66667 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信