从电子健康记录系统中导出患者去识别临床研究数据库:确定住院患者乳酸、c反应蛋白和降钙素原预后价值的单一中心经验

R. Mohan, P. PhillipHo, L. Dalton, F. Chan, Nguyen Hb
{"title":"从电子健康记录系统中导出患者去识别临床研究数据库:确定住院患者乳酸、c反应蛋白和降钙素原预后价值的单一中心经验","authors":"R. Mohan, P. PhillipHo, L. Dalton, F. Chan, Nguyen Hb","doi":"10.15761/jts.1000405","DOIUrl":null,"url":null,"abstract":"Objective : In this study, we demonstrate the derivation of a de-identified research database from the electronic health records (EHR) and then use it in determining the prognostic value of biomarkers lactate, C-reactive protein (CRP), and procalcitonin in hospitalized patients. Methods : The database was created through a series of data export, transform, load, and visualization. A database glossary was completed, including 650 data elements per patient encounter without personal identifiers. Data visualization and statistical analysis tools were provided to those utilizing the database. Results : From July 2012 to August 2019, the database contained 240,759 distinct hospital encounters, with 2,682 patients meeting criteria for analysis, age 54.5±18.6 years, lactate 1.9±1.7 mmol/L, CRP 10.7±10.0 µg/mL, procalcitonin 4.0±17.5 ng/mL, and mortality 8.7%. ROC area under the curve for lactate, CRP, and procalcitonin was 0.670, 0.553, and 0.672, respectively. Lactate, CRP, and procalcitonin had odds ratio for mortality of 1.111 (1.037-1.190), 1.015 (0.991-1.031), and 0.999 (0.991-1.007), respectively. Conclusions : Our efforts provide a framework for creating EHR-derived de-identified patient data for clinical research. Our analysis of the prognostic value of lactate, CRP, and procalcitonin showed these biomarkers to be less accurate than expected, highlighting the challenges of using existing data.","PeriodicalId":74000,"journal":{"name":"Journal of translational science","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deriving a patient de-identified clinical research database from an electronic health record system: A single center experience in determining the prognostic value of lactate, C-reactive protein, and procalcitonin in hospitalized patients\",\"authors\":\"R. Mohan, P. PhillipHo, L. Dalton, F. Chan, Nguyen Hb\",\"doi\":\"10.15761/jts.1000405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective : In this study, we demonstrate the derivation of a de-identified research database from the electronic health records (EHR) and then use it in determining the prognostic value of biomarkers lactate, C-reactive protein (CRP), and procalcitonin in hospitalized patients. Methods : The database was created through a series of data export, transform, load, and visualization. A database glossary was completed, including 650 data elements per patient encounter without personal identifiers. Data visualization and statistical analysis tools were provided to those utilizing the database. Results : From July 2012 to August 2019, the database contained 240,759 distinct hospital encounters, with 2,682 patients meeting criteria for analysis, age 54.5±18.6 years, lactate 1.9±1.7 mmol/L, CRP 10.7±10.0 µg/mL, procalcitonin 4.0±17.5 ng/mL, and mortality 8.7%. ROC area under the curve for lactate, CRP, and procalcitonin was 0.670, 0.553, and 0.672, respectively. Lactate, CRP, and procalcitonin had odds ratio for mortality of 1.111 (1.037-1.190), 1.015 (0.991-1.031), and 0.999 (0.991-1.007), respectively. Conclusions : Our efforts provide a framework for creating EHR-derived de-identified patient data for clinical research. Our analysis of the prognostic value of lactate, CRP, and procalcitonin showed these biomarkers to be less accurate than expected, highlighting the challenges of using existing data.\",\"PeriodicalId\":74000,\"journal\":{\"name\":\"Journal of translational science\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of translational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15761/jts.1000405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of translational science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15761/jts.1000405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:在本研究中,我们从电子健康记录(EHR)中推导出一个去识别的研究数据库,然后用它来确定住院患者的乳酸、c反应蛋白(CRP)和降钙素原的生物标志物的预后价值。方法:通过一系列数据导出、转换、加载、可视化等步骤建立数据库。完成了一个数据库术语表,包括每个患者就诊的650个数据元素,没有个人标识符。为使用数据库的人员提供数据可视化和统计分析工具。结果:2012年7月至2019年8月,数据库包含240759例不同的医院就诊,符合分析标准的患者2682例,年龄54.5±18.6岁,乳酸1.9±1.7 mmol/L, CRP 10.7±10.0µg/mL,降钙素原4.0±17.5 ng/mL,死亡率8.7%。乳酸、CRP和降钙素原的ROC曲线下面积分别为0.670、0.553和0.672。乳酸、CRP和降钙素原的死亡率优势比分别为1.111(1.037 ~ 1.190)、1.015(0.991 ~ 1.031)和0.999(0.991 ~ 1.007)。结论:我们的努力为临床研究创建ehr衍生的去识别患者数据提供了一个框架。我们对乳酸盐、CRP和降钙素原的预测价值的分析显示,这些生物标志物的准确性低于预期,突出了使用现有数据的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deriving a patient de-identified clinical research database from an electronic health record system: A single center experience in determining the prognostic value of lactate, C-reactive protein, and procalcitonin in hospitalized patients
Objective : In this study, we demonstrate the derivation of a de-identified research database from the electronic health records (EHR) and then use it in determining the prognostic value of biomarkers lactate, C-reactive protein (CRP), and procalcitonin in hospitalized patients. Methods : The database was created through a series of data export, transform, load, and visualization. A database glossary was completed, including 650 data elements per patient encounter without personal identifiers. Data visualization and statistical analysis tools were provided to those utilizing the database. Results : From July 2012 to August 2019, the database contained 240,759 distinct hospital encounters, with 2,682 patients meeting criteria for analysis, age 54.5±18.6 years, lactate 1.9±1.7 mmol/L, CRP 10.7±10.0 µg/mL, procalcitonin 4.0±17.5 ng/mL, and mortality 8.7%. ROC area under the curve for lactate, CRP, and procalcitonin was 0.670, 0.553, and 0.672, respectively. Lactate, CRP, and procalcitonin had odds ratio for mortality of 1.111 (1.037-1.190), 1.015 (0.991-1.031), and 0.999 (0.991-1.007), respectively. Conclusions : Our efforts provide a framework for creating EHR-derived de-identified patient data for clinical research. Our analysis of the prognostic value of lactate, CRP, and procalcitonin showed these biomarkers to be less accurate than expected, highlighting the challenges of using existing data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信