大规模MIMO:介绍

Q1 Engineering
T. Marzetta
{"title":"大规模MIMO:介绍","authors":"T. Marzetta","doi":"10.15325/BLTJ.2015.2407793","DOIUrl":null,"url":null,"abstract":"Demand for wireless throughput, both mobile and fixed, will always increase. One can anticipate that, in five or ten years, millions of augmented reality users in a large city will want to transmit and receive 3D personal high-definition video more or less continuously, say 100 megabits per second per user in each direction. Massive MIMO-also called Large-Scale Antenna Systems-is a promising candidate technology for meeting this demand. Fifty-fold or greater spectral efficiency improvements over fourth generation (4G) technology are frequently mentioned. A multiplicity of physically small, individually controlled antennas performs aggressive multiplexing/demultiplexing for all active users, utilizing directly measured channel characteristics. Unlike today's Point-to-Point MIMO, by leveraging time-division duplexing (TDD), Massive MIMO is scalable to any desired degree with respect to the number of service antennas. Adding more antennas is always beneficial for increased throughput, reduced radiated power, uniformly great service everywhere in the cell, and greater simplicity in signal processing. Massive MIMO is a brand new technology that has yet to be reduced to practice. Notwithstanding, its principles of operation are well understood, and surprisingly simple to elucidate.","PeriodicalId":55592,"journal":{"name":"Bell Labs Technical Journal","volume":"20 1","pages":"11-22"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15325/BLTJ.2015.2407793","citationCount":"497","resultStr":"{\"title\":\"Massive MIMO: An Introduction\",\"authors\":\"T. Marzetta\",\"doi\":\"10.15325/BLTJ.2015.2407793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Demand for wireless throughput, both mobile and fixed, will always increase. One can anticipate that, in five or ten years, millions of augmented reality users in a large city will want to transmit and receive 3D personal high-definition video more or less continuously, say 100 megabits per second per user in each direction. Massive MIMO-also called Large-Scale Antenna Systems-is a promising candidate technology for meeting this demand. Fifty-fold or greater spectral efficiency improvements over fourth generation (4G) technology are frequently mentioned. A multiplicity of physically small, individually controlled antennas performs aggressive multiplexing/demultiplexing for all active users, utilizing directly measured channel characteristics. Unlike today's Point-to-Point MIMO, by leveraging time-division duplexing (TDD), Massive MIMO is scalable to any desired degree with respect to the number of service antennas. Adding more antennas is always beneficial for increased throughput, reduced radiated power, uniformly great service everywhere in the cell, and greater simplicity in signal processing. Massive MIMO is a brand new technology that has yet to be reduced to practice. Notwithstanding, its principles of operation are well understood, and surprisingly simple to elucidate.\",\"PeriodicalId\":55592,\"journal\":{\"name\":\"Bell Labs Technical Journal\",\"volume\":\"20 1\",\"pages\":\"11-22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.15325/BLTJ.2015.2407793\",\"citationCount\":\"497\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bell Labs Technical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15325/BLTJ.2015.2407793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bell Labs Technical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15325/BLTJ.2015.2407793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 497

摘要

对移动和固定无线吞吐量的需求将不断增加。可以预见的是,在5到10年内,大城市中数百万的增强现实用户将希望或多或少地连续传输和接收3D个人高清视频,比如每个用户在每个方向上每秒100兆比特。大规模mimo——也被称为大规模天线系统——是满足这一需求的一种很有前途的候选技术。频谱效率比第四代(4G)技术提高了50倍或更高。物理上小的、单独控制的天线的多重性利用直接测量的信道特性,为所有活跃用户执行积极的多路/解路复用。与今天的点对点MIMO不同,通过利用时分双工(TDD),大规模MIMO可以根据服务天线的数量扩展到任何所需的程度。增加更多的天线总是有利于提高吞吐量,降低辐射功率,在小区各处提供统一的优质服务,并使信号处理更加简单。大规模MIMO是一项尚未付诸实践的全新技术。尽管如此,它的操作原理是很容易理解的,而且解释起来出奇地简单。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Massive MIMO: An Introduction
Demand for wireless throughput, both mobile and fixed, will always increase. One can anticipate that, in five or ten years, millions of augmented reality users in a large city will want to transmit and receive 3D personal high-definition video more or less continuously, say 100 megabits per second per user in each direction. Massive MIMO-also called Large-Scale Antenna Systems-is a promising candidate technology for meeting this demand. Fifty-fold or greater spectral efficiency improvements over fourth generation (4G) technology are frequently mentioned. A multiplicity of physically small, individually controlled antennas performs aggressive multiplexing/demultiplexing for all active users, utilizing directly measured channel characteristics. Unlike today's Point-to-Point MIMO, by leveraging time-division duplexing (TDD), Massive MIMO is scalable to any desired degree with respect to the number of service antennas. Adding more antennas is always beneficial for increased throughput, reduced radiated power, uniformly great service everywhere in the cell, and greater simplicity in signal processing. Massive MIMO is a brand new technology that has yet to be reduced to practice. Notwithstanding, its principles of operation are well understood, and surprisingly simple to elucidate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bell Labs Technical Journal
Bell Labs Technical Journal 工程技术-电信学
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: The Bell Labs Technical Journal (BLTJ) highlights key research and development activities across Alcatel-Lucent — within Bell Labs, within the company’s CTO organizations, and in cross-functional projects and initiatives. It publishes papers and letters by Alcatel-Lucent researchers, scientists, and engineers and co-authors affiliated with universities, government and corporate research labs, and customer companies. Its aim is to promote progress in communications fields worldwide; Bell Labs innovations enable Alcatel-Lucent to deliver leading products, solutions, and services that meet customers’ mission critical needs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信