Mehrdad Zarinejad, Sajjad Rimaz, Y. Tong, K. Wada, F. Pahlevani
{"title":"铂铑二元合金力学性能与价电子参数的关系","authors":"Mehrdad Zarinejad, Sajjad Rimaz, Y. Tong, K. Wada, F. Pahlevani","doi":"10.1595/205651323x16527144808494","DOIUrl":null,"url":null,"abstract":"Dependence of mechanical properties of binary Pt-Rh alloys on valence electron ratio (VER), number valence electrons (ev), and average atomic number of the alloys (Z) are investigated. The alloys have high number of valence electrons (9 ≤ ev ≤ 10) and a wide range of the average atomic number (Z = 45–78). Clear correlations between VER of the alloys and their mechanical properties are found. By increasing the VER of the alloy from 0.13 to 0.20 following the increase of Rh content in the composition, the hardness, elastic modulus, and ultimate tensile strength of the alloy increases. Creep rates of the selected alloys clearly decrease with increasing VER at high temperatures (1500-1700 ℃C), whilst stress rupture time at different temperatures consistently increases because of higher Rh content in the alloy solid solution chemistry. Dependence of mechanical properties on valence electron parameters is discussed with reference to the atomic bonding.","PeriodicalId":14807,"journal":{"name":"Johnson Matthey Technology Review","volume":"1 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dependence of Mechanical Properties of Platinum-Rhodium Binary Alloys on Valence Electron Parameters\",\"authors\":\"Mehrdad Zarinejad, Sajjad Rimaz, Y. Tong, K. Wada, F. Pahlevani\",\"doi\":\"10.1595/205651323x16527144808494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dependence of mechanical properties of binary Pt-Rh alloys on valence electron ratio (VER), number valence electrons (ev), and average atomic number of the alloys (Z) are investigated. The alloys have high number of valence electrons (9 ≤ ev ≤ 10) and a wide range of the average atomic number (Z = 45–78). Clear correlations between VER of the alloys and their mechanical properties are found. By increasing the VER of the alloy from 0.13 to 0.20 following the increase of Rh content in the composition, the hardness, elastic modulus, and ultimate tensile strength of the alloy increases. Creep rates of the selected alloys clearly decrease with increasing VER at high temperatures (1500-1700 ℃C), whilst stress rupture time at different temperatures consistently increases because of higher Rh content in the alloy solid solution chemistry. Dependence of mechanical properties on valence electron parameters is discussed with reference to the atomic bonding.\",\"PeriodicalId\":14807,\"journal\":{\"name\":\"Johnson Matthey Technology Review\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Johnson Matthey Technology Review\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1595/205651323x16527144808494\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Johnson Matthey Technology Review","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1595/205651323x16527144808494","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Dependence of Mechanical Properties of Platinum-Rhodium Binary Alloys on Valence Electron Parameters
Dependence of mechanical properties of binary Pt-Rh alloys on valence electron ratio (VER), number valence electrons (ev), and average atomic number of the alloys (Z) are investigated. The alloys have high number of valence electrons (9 ≤ ev ≤ 10) and a wide range of the average atomic number (Z = 45–78). Clear correlations between VER of the alloys and their mechanical properties are found. By increasing the VER of the alloy from 0.13 to 0.20 following the increase of Rh content in the composition, the hardness, elastic modulus, and ultimate tensile strength of the alloy increases. Creep rates of the selected alloys clearly decrease with increasing VER at high temperatures (1500-1700 ℃C), whilst stress rupture time at different temperatures consistently increases because of higher Rh content in the alloy solid solution chemistry. Dependence of mechanical properties on valence electron parameters is discussed with reference to the atomic bonding.
期刊介绍:
Johnson Matthey Technology Review publishes articles, reviews and short reports on science enabling cleaner air, good health and efficient use of natural resources. Areas of application and fundamental science will be considered in the fields of:Advanced materials[...]Catalysis[...][...]Characterisation[...]Electrochemistry[...]Emissions control[...]Fine and speciality chemicals[...]Historical[...]Industrial processes[...]Materials and metallurgy[...]Modelling[...]PGM and specialist metallurgy[...]Pharmaceutical and medical science[...]Surface chemistry and coatings[...]Sustainable technologies.