钯在有机合成中的临界性展望

IF 1.7 4区 化学 Q4 CHEMISTRY, PHYSICAL
Emma R. Schofield
{"title":"钯在有机合成中的临界性展望","authors":"Emma R. Schofield","doi":"10.1595/205651323x16698159435925","DOIUrl":null,"url":null,"abstract":"The palladium price has been rising because emissions legislation necessitates using more palladium in catalytic converters. However, this trend will not continue as the energy transition progresses, and in the future there will be considerably more palladium available to use in other applications, including chemicals, pharmaceuticals and agrochemicals catalysts. This is both opportunity and justification for the organic chemistry research community to develop new and significant uses for palladium that can be of global benefit. Any catalyst research needs to include optimisation of circular economy, offering sustainable process and recovery options to support life cycle assessment.","PeriodicalId":14807,"journal":{"name":"Johnson Matthey Technology Review","volume":"1 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Perspective on the Criticality of Palladium in Organic Synthesis\",\"authors\":\"Emma R. Schofield\",\"doi\":\"10.1595/205651323x16698159435925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The palladium price has been rising because emissions legislation necessitates using more palladium in catalytic converters. However, this trend will not continue as the energy transition progresses, and in the future there will be considerably more palladium available to use in other applications, including chemicals, pharmaceuticals and agrochemicals catalysts. This is both opportunity and justification for the organic chemistry research community to develop new and significant uses for palladium that can be of global benefit. Any catalyst research needs to include optimisation of circular economy, offering sustainable process and recovery options to support life cycle assessment.\",\"PeriodicalId\":14807,\"journal\":{\"name\":\"Johnson Matthey Technology Review\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Johnson Matthey Technology Review\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1595/205651323x16698159435925\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Johnson Matthey Technology Review","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1595/205651323x16698159435925","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

摘要

钯的价格一直在上涨,因为排放法规要求在催化转化器中使用更多的钯。然而,随着能源转型的进展,这一趋势不会持续下去,未来将有更多的钯可用于其他应用,包括化学品、制药和农用化学品催化剂。这是有机化学研究界开发钯的新和重要用途的机会和理由,可以为全球带来好处。任何催化剂研究都需要包括循环经济的优化,提供可持续的过程和回收选择,以支持生命周期评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perspective on the Criticality of Palladium in Organic Synthesis
The palladium price has been rising because emissions legislation necessitates using more palladium in catalytic converters. However, this trend will not continue as the energy transition progresses, and in the future there will be considerably more palladium available to use in other applications, including chemicals, pharmaceuticals and agrochemicals catalysts. This is both opportunity and justification for the organic chemistry research community to develop new and significant uses for palladium that can be of global benefit. Any catalyst research needs to include optimisation of circular economy, offering sustainable process and recovery options to support life cycle assessment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Johnson Matthey Technology Review
Johnson Matthey Technology Review CHEMISTRY, PHYSICAL-
CiteScore
4.30
自引率
4.30%
发文量
48
审稿时长
12 weeks
期刊介绍: Johnson Matthey Technology Review publishes articles, reviews and short reports on science enabling cleaner air, good health and efficient use of natural resources. Areas of application and fundamental science will be considered in the fields of:Advanced materials[...]Catalysis[...][...]Characterisation[...]Electrochemistry[...]Emissions control[...]Fine and speciality chemicals[...]Historical[...]Industrial processes[...]Materials and metallurgy[...]Modelling[...]PGM and specialist metallurgy[...]Pharmaceutical and medical science[...]Surface chemistry and coatings[...]Sustainable technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信