{"title":"通过氨分解集中和局部制氢","authors":"J. Ashcroft, Helen Goddin","doi":"10.1595/205651322x16554704236047","DOIUrl":null,"url":null,"abstract":"Ammonia is a strong candidate as a hydrogen vector and has the flexibility to be used directly as a fuel or decomposed to form pure hydrogen. The format of an ammonia decomposition plant is only starting to emerge, with two types becoming significant: centralised locations feeding into the national gas network, and decentralised units, to supply fuelling stations, the chemical industry, or remote applications. In this paper, we review the aspects critical to decompose ammonia in both cases. While the centralised cracking flowsheet can use equipment standard to current hydrogen production methods, the localised cracking unit requires a more innovative design. Energy and safety considerations may favour low temperature operation for decentralised applications, requiring high activity catalysts, whilst centralised industrial sites may operate at higher temperatures and use a base metal catalyst. Purification to deliver hydrogen suitable for fuel cells is one of the biggest challenges in developing the flowsheet.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Centralised and localised hydrogen generation by ammonia decomposition\",\"authors\":\"J. Ashcroft, Helen Goddin\",\"doi\":\"10.1595/205651322x16554704236047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ammonia is a strong candidate as a hydrogen vector and has the flexibility to be used directly as a fuel or decomposed to form pure hydrogen. The format of an ammonia decomposition plant is only starting to emerge, with two types becoming significant: centralised locations feeding into the national gas network, and decentralised units, to supply fuelling stations, the chemical industry, or remote applications. In this paper, we review the aspects critical to decompose ammonia in both cases. While the centralised cracking flowsheet can use equipment standard to current hydrogen production methods, the localised cracking unit requires a more innovative design. Energy and safety considerations may favour low temperature operation for decentralised applications, requiring high activity catalysts, whilst centralised industrial sites may operate at higher temperatures and use a base metal catalyst. Purification to deliver hydrogen suitable for fuel cells is one of the biggest challenges in developing the flowsheet.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1595/205651322x16554704236047\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1595/205651322x16554704236047","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Centralised and localised hydrogen generation by ammonia decomposition
Ammonia is a strong candidate as a hydrogen vector and has the flexibility to be used directly as a fuel or decomposed to form pure hydrogen. The format of an ammonia decomposition plant is only starting to emerge, with two types becoming significant: centralised locations feeding into the national gas network, and decentralised units, to supply fuelling stations, the chemical industry, or remote applications. In this paper, we review the aspects critical to decompose ammonia in both cases. While the centralised cracking flowsheet can use equipment standard to current hydrogen production methods, the localised cracking unit requires a more innovative design. Energy and safety considerations may favour low temperature operation for decentralised applications, requiring high activity catalysts, whilst centralised industrial sites may operate at higher temperatures and use a base metal catalyst. Purification to deliver hydrogen suitable for fuel cells is one of the biggest challenges in developing the flowsheet.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.