氮、氢化物和碳化物作为氨合成的多相催化剂:综述

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
A. Daisley, J. Hargreaves
{"title":"氮、氢化物和碳化物作为氨合成的多相催化剂:综述","authors":"A. Daisley, J. Hargreaves","doi":"10.1595/205651322x16493249558666","DOIUrl":null,"url":null,"abstract":"Driven by the desire to develop novel catalyst formulations which are applicable for localised, more sustainable routes, the area of heterogeneously catalysed ammonia synthesis has attracted much attention in the academic literature in recent times. One of the key incentives for this has been the idea that ammonia synthesis for the production of synthetic fertiliser can be achieved on, for example, a farm close to its point of application with the required hydrogen feedstream being derived from sustainable sources such as electrolysis of water accomplished using electricity produced using wind turbines or solar energy sources. Further drivers are the possible application of ammonia as a non-fossil based fuel and also as a means to indirectly store intermittent over-supply of sustainably derived electricity. In the literature, the energy intensive nature of the Haber Bosch Process, frequently quoted to be 1-2% of global energy demand, and its CO2 footprint, stated to comprise 2.5% of fossil fuel based emissions, are statistics that are frequently quoted in justification for the search for new routes to ammonia production [1,2]. However, due recognition has to be given to the highly efficient integration of the Haber Bosch Process as currently operated. In relation to this, large scale synthesis of ammonia is highly optimised and it can be credited with the sustenance of ca 40% of the global population. These considerations, coupled to the recently reported UK CO2 supply chain shortage, related to a reduction in commercial fertiliser production [3], underline the importance of the highly integrated nature of the process.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nitrides, Hydrides and Carbides as Alternative Heterogeneous Catalysis for Ammonia Synthesis: A Brief Overview\",\"authors\":\"A. Daisley, J. Hargreaves\",\"doi\":\"10.1595/205651322x16493249558666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Driven by the desire to develop novel catalyst formulations which are applicable for localised, more sustainable routes, the area of heterogeneously catalysed ammonia synthesis has attracted much attention in the academic literature in recent times. One of the key incentives for this has been the idea that ammonia synthesis for the production of synthetic fertiliser can be achieved on, for example, a farm close to its point of application with the required hydrogen feedstream being derived from sustainable sources such as electrolysis of water accomplished using electricity produced using wind turbines or solar energy sources. Further drivers are the possible application of ammonia as a non-fossil based fuel and also as a means to indirectly store intermittent over-supply of sustainably derived electricity. In the literature, the energy intensive nature of the Haber Bosch Process, frequently quoted to be 1-2% of global energy demand, and its CO2 footprint, stated to comprise 2.5% of fossil fuel based emissions, are statistics that are frequently quoted in justification for the search for new routes to ammonia production [1,2]. However, due recognition has to be given to the highly efficient integration of the Haber Bosch Process as currently operated. In relation to this, large scale synthesis of ammonia is highly optimised and it can be credited with the sustenance of ca 40% of the global population. These considerations, coupled to the recently reported UK CO2 supply chain shortage, related to a reduction in commercial fertiliser production [3], underline the importance of the highly integrated nature of the process.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1595/205651322x16493249558666\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1595/205651322x16493249558666","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在开发适用于局部、更可持续路线的新型催化剂配方的愿望的推动下,多相催化合成氨领域近年来引起了学术文献的广泛关注。其中一个关键的激励因素是,用于生产合成肥料的氨合成可以在靠近其应用点的农场上实现,例如,所需的氢原料来自可持续来源,例如使用风力涡轮机或太阳能产生的电力完成的水电解。进一步的驱动因素是氨作为非化石燃料的可能应用,以及作为间接储存间歇性供应过剩的可持续衍生电力的手段。在文献中,Haber Bosch工艺的能源密集型性质,经常被引用为占全球能源需求的1-2%,其二氧化碳足迹,据称占化石燃料排放量的2.5%,这些统计数据经常被引用为寻找氨生产新途径的理由[1,2]。然而,必须对目前运作的哈伯-博世工艺的高效整合给予应有的承认。与此相关,氨的大规模合成是高度优化的,它可以被认为是全球约40%人口的食物。这些考虑,再加上最近报道的英国二氧化碳供应链短缺,与商业肥料生产减少有关,强调了该过程高度一体化的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nitrides, Hydrides and Carbides as Alternative Heterogeneous Catalysis for Ammonia Synthesis: A Brief Overview
Driven by the desire to develop novel catalyst formulations which are applicable for localised, more sustainable routes, the area of heterogeneously catalysed ammonia synthesis has attracted much attention in the academic literature in recent times. One of the key incentives for this has been the idea that ammonia synthesis for the production of synthetic fertiliser can be achieved on, for example, a farm close to its point of application with the required hydrogen feedstream being derived from sustainable sources such as electrolysis of water accomplished using electricity produced using wind turbines or solar energy sources. Further drivers are the possible application of ammonia as a non-fossil based fuel and also as a means to indirectly store intermittent over-supply of sustainably derived electricity. In the literature, the energy intensive nature of the Haber Bosch Process, frequently quoted to be 1-2% of global energy demand, and its CO2 footprint, stated to comprise 2.5% of fossil fuel based emissions, are statistics that are frequently quoted in justification for the search for new routes to ammonia production [1,2]. However, due recognition has to be given to the highly efficient integration of the Haber Bosch Process as currently operated. In relation to this, large scale synthesis of ammonia is highly optimised and it can be credited with the sustenance of ca 40% of the global population. These considerations, coupled to the recently reported UK CO2 supply chain shortage, related to a reduction in commercial fertiliser production [3], underline the importance of the highly integrated nature of the process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信