{"title":"提高加工性能的生物活性玻璃的化学成分精制,第1部分","authors":"F. Hmood, O. Goerke, Franziska Schmidt","doi":"10.1515/bglass-2018-0008","DOIUrl":null,"url":null,"abstract":"Abstract Bioactive glass is an emerging research area for many scientists around the world. A large processing window combined with high bioactivity are anticipated features for such kind of glass. In fact, both features depend upon the glass network connectivity (NC). A good bioactive glass has a network that ensures a balance between the processing properties and the bioactivity. This study aims at developing a new chemical composition based on that of ICIE16 bioactive glass. Therefore, new compositions were investigated by introducing boron oxide and magnesium oxide with different molar ratios ranging from 1 to 3 mol% each to the composition of ICIE16; In addition,Na2O was partially replaced by P2O5. Melt-quenching technique was followed to prepare the bioactive glass. So far, the results have shown that the processing window increases with the proposed modifications. BP3 and BM2 bioactive glasses show the maximum processing window of a round 250 K. The relationship between the chemical composition and the processing window as well as the corresponding bioactivity will be hereafter discussed.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2018-0008","citationCount":"8","resultStr":"{\"title\":\"Chemical Composition Refining of Bioactive Glass for Better Processing Features, Part I\",\"authors\":\"F. Hmood, O. Goerke, Franziska Schmidt\",\"doi\":\"10.1515/bglass-2018-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Bioactive glass is an emerging research area for many scientists around the world. A large processing window combined with high bioactivity are anticipated features for such kind of glass. In fact, both features depend upon the glass network connectivity (NC). A good bioactive glass has a network that ensures a balance between the processing properties and the bioactivity. This study aims at developing a new chemical composition based on that of ICIE16 bioactive glass. Therefore, new compositions were investigated by introducing boron oxide and magnesium oxide with different molar ratios ranging from 1 to 3 mol% each to the composition of ICIE16; In addition,Na2O was partially replaced by P2O5. Melt-quenching technique was followed to prepare the bioactive glass. So far, the results have shown that the processing window increases with the proposed modifications. BP3 and BM2 bioactive glasses show the maximum processing window of a round 250 K. The relationship between the chemical composition and the processing window as well as the corresponding bioactivity will be hereafter discussed.\",\"PeriodicalId\":37354,\"journal\":{\"name\":\"Biomedical Glasses\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/bglass-2018-0008\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Glasses\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/bglass-2018-0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Glasses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bglass-2018-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
Chemical Composition Refining of Bioactive Glass for Better Processing Features, Part I
Abstract Bioactive glass is an emerging research area for many scientists around the world. A large processing window combined with high bioactivity are anticipated features for such kind of glass. In fact, both features depend upon the glass network connectivity (NC). A good bioactive glass has a network that ensures a balance between the processing properties and the bioactivity. This study aims at developing a new chemical composition based on that of ICIE16 bioactive glass. Therefore, new compositions were investigated by introducing boron oxide and magnesium oxide with different molar ratios ranging from 1 to 3 mol% each to the composition of ICIE16; In addition,Na2O was partially replaced by P2O5. Melt-quenching technique was followed to prepare the bioactive glass. So far, the results have shown that the processing window increases with the proposed modifications. BP3 and BM2 bioactive glasses show the maximum processing window of a round 250 K. The relationship between the chemical composition and the processing window as well as the corresponding bioactivity will be hereafter discussed.
期刊介绍:
Biomedical Glasses is an international Open Access-only journal covering the field of glasses for biomedical applications. The scope of the journal covers the science and technology of glasses and glass-based materials intended for applications in medicine and dentistry. It includes: Chemistry, physics, structure, design and characterization of biomedical glasses Surface science and interactions of biomedical glasses with aqueous and biological media Modeling structure and reactivity of biomedical glasses and their interfaces Biocompatibility of biomedical glasses Processing of biomedical glasses to achieve specific forms and functionality Biomedical glass coatings and composites In vitro and in vivo evaluation of biomedical glasses Glasses and glass-ceramics in engineered regeneration of tissues and organs Glass-based devices for medical and dental applications Application of glasses and glass-ceramics in healthcare.