{"title":"单位超立方体上无限非合作博弈的均匀抽样及博弈者收益值的最终多维矩阵的重塑","authors":"V. Romanuke","doi":"10.1515/ecce-2015-0002","DOIUrl":null,"url":null,"abstract":"Abstract The paper suggests a method of obtaining an approximate solution of the infinite noncooperative game on the unit hypercube. The method is based on sampling uniformly the players’ payoff functions with the constant step along each of the hypercube dimensions. The author states the conditions for a sufficiently accurate sampling and suggests the method of reshaping the multidimensional matrix of the player’s payoff values, being the former player’s payoff function before its sampling, into a matrix with minimally possible number of dimensions, where also maintenance of one-to-one indexing has been provided. Requirements for finite NE-strategy from NE (Nash equilibrium) solution of the finite game as the initial infinite game approximation are given as definitions of the approximate solution consistency. The approximate solution consistency ensures its relative independence upon the sampling step within its minimal neighborhood or the minimally decreased sampling step. The ultimate reshaping of multidimensional matrices of players’ payoff values to the minimal number of dimensions, being equal to the number of players, stimulates shortened computations.","PeriodicalId":42365,"journal":{"name":"Electrical Control and Communication Engineering","volume":"8 1","pages":"13 - 19"},"PeriodicalIF":0.5000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Uniform Sampling of the Infinite Noncooperative Game on Unit Hypercube and Reshaping Ultimately Multidimensional Matrices of Player’s Payoff Values\",\"authors\":\"V. Romanuke\",\"doi\":\"10.1515/ecce-2015-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The paper suggests a method of obtaining an approximate solution of the infinite noncooperative game on the unit hypercube. The method is based on sampling uniformly the players’ payoff functions with the constant step along each of the hypercube dimensions. The author states the conditions for a sufficiently accurate sampling and suggests the method of reshaping the multidimensional matrix of the player’s payoff values, being the former player’s payoff function before its sampling, into a matrix with minimally possible number of dimensions, where also maintenance of one-to-one indexing has been provided. Requirements for finite NE-strategy from NE (Nash equilibrium) solution of the finite game as the initial infinite game approximation are given as definitions of the approximate solution consistency. The approximate solution consistency ensures its relative independence upon the sampling step within its minimal neighborhood or the minimally decreased sampling step. The ultimate reshaping of multidimensional matrices of players’ payoff values to the minimal number of dimensions, being equal to the number of players, stimulates shortened computations.\",\"PeriodicalId\":42365,\"journal\":{\"name\":\"Electrical Control and Communication Engineering\",\"volume\":\"8 1\",\"pages\":\"13 - 19\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrical Control and Communication Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/ecce-2015-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Control and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ecce-2015-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Uniform Sampling of the Infinite Noncooperative Game on Unit Hypercube and Reshaping Ultimately Multidimensional Matrices of Player’s Payoff Values
Abstract The paper suggests a method of obtaining an approximate solution of the infinite noncooperative game on the unit hypercube. The method is based on sampling uniformly the players’ payoff functions with the constant step along each of the hypercube dimensions. The author states the conditions for a sufficiently accurate sampling and suggests the method of reshaping the multidimensional matrix of the player’s payoff values, being the former player’s payoff function before its sampling, into a matrix with minimally possible number of dimensions, where also maintenance of one-to-one indexing has been provided. Requirements for finite NE-strategy from NE (Nash equilibrium) solution of the finite game as the initial infinite game approximation are given as definitions of the approximate solution consistency. The approximate solution consistency ensures its relative independence upon the sampling step within its minimal neighborhood or the minimally decreased sampling step. The ultimate reshaping of multidimensional matrices of players’ payoff values to the minimal number of dimensions, being equal to the number of players, stimulates shortened computations.