H. Charalambous, K. Karagiannis, Sotiris Karanikolopoulos, A. Kontogeorgis
{"title":"可由Harbater-Katz-Gabber覆盖实现的最大曲线的Weierstrass半群","authors":"H. Charalambous, K. Karagiannis, Sotiris Karanikolopoulos, A. Kontogeorgis","doi":"10.1515/advgeom-2022-0014","DOIUrl":null,"url":null,"abstract":"Abstract We present a necessary and sufficient condition for a maximal curve, defined over the algebraic closure of a finite field, to be realised as an HKG-cover. We use an approach via pole numbers in a rational point of the curve. For this class of curves, we compute their Weierstrass semigroup as well as the jumps of their higher ramification filtrations at this point, the unique ramification point of the cover.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weierstrass semigroups for maximal curves realizable as Harbater–Katz–Gabber covers\",\"authors\":\"H. Charalambous, K. Karagiannis, Sotiris Karanikolopoulos, A. Kontogeorgis\",\"doi\":\"10.1515/advgeom-2022-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present a necessary and sufficient condition for a maximal curve, defined over the algebraic closure of a finite field, to be realised as an HKG-cover. We use an approach via pole numbers in a rational point of the curve. For this class of curves, we compute their Weierstrass semigroup as well as the jumps of their higher ramification filtrations at this point, the unique ramification point of the cover.\",\"PeriodicalId\":7335,\"journal\":{\"name\":\"Advances in Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/advgeom-2022-0014\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2022-0014","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Weierstrass semigroups for maximal curves realizable as Harbater–Katz–Gabber covers
Abstract We present a necessary and sufficient condition for a maximal curve, defined over the algebraic closure of a finite field, to be realised as an HKG-cover. We use an approach via pole numbers in a rational point of the curve. For this class of curves, we compute their Weierstrass semigroup as well as the jumps of their higher ramification filtrations at this point, the unique ramification point of the cover.
期刊介绍:
Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.