丝绸蛋白的冰重结晶抑制活性

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL
Yu Zhao, Hao Lu, Daizong Qi, Antonella Motta, Janine Fröhlich-Nowoisky, Jing Chen*, Yuling Sun* and Mischa Bonn, 
{"title":"丝绸蛋白的冰重结晶抑制活性","authors":"Yu Zhao,&nbsp;Hao Lu,&nbsp;Daizong Qi,&nbsp;Antonella Motta,&nbsp;Janine Fröhlich-Nowoisky,&nbsp;Jing Chen*,&nbsp;Yuling Sun* and Mischa Bonn,&nbsp;","doi":"10.1021/acs.jpclett.3c01995","DOIUrl":null,"url":null,"abstract":"<p >The cryopreservation of cells, tissue, and organs is essential in both fundamental research and practical applications, such as modern regenerative medicine and technological applications. However, the formation of ice crystals during ice recrystallization can have harmful or even fatal effects on biological systems. To address this challenge, we explore the ice recrystallization inhibition (IRI) activity of two natural silk proteins of <i>Bombyx mori</i>, fibroin and sericin. We found that silk fibroin (SF) had higher ice recrystallization inhibition activity than silk sericin (SS). Moreover, SF aqueous solutions perform better in inhibiting ice recrystallization than SF phosphate-buffered saline solutions. Sum-frequency generation spectroscopy shows that stronger electrostatic interactions are responsible for the higher IRI ability of SF. This work is significant for broadening the applications of silk proteins in biomedical fields.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"14 36","pages":"8145–8150"},"PeriodicalIF":4.8000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ice Recrystallization Inhibition Activity of Silk Proteins\",\"authors\":\"Yu Zhao,&nbsp;Hao Lu,&nbsp;Daizong Qi,&nbsp;Antonella Motta,&nbsp;Janine Fröhlich-Nowoisky,&nbsp;Jing Chen*,&nbsp;Yuling Sun* and Mischa Bonn,&nbsp;\",\"doi\":\"10.1021/acs.jpclett.3c01995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The cryopreservation of cells, tissue, and organs is essential in both fundamental research and practical applications, such as modern regenerative medicine and technological applications. However, the formation of ice crystals during ice recrystallization can have harmful or even fatal effects on biological systems. To address this challenge, we explore the ice recrystallization inhibition (IRI) activity of two natural silk proteins of <i>Bombyx mori</i>, fibroin and sericin. We found that silk fibroin (SF) had higher ice recrystallization inhibition activity than silk sericin (SS). Moreover, SF aqueous solutions perform better in inhibiting ice recrystallization than SF phosphate-buffered saline solutions. Sum-frequency generation spectroscopy shows that stronger electrostatic interactions are responsible for the higher IRI ability of SF. This work is significant for broadening the applications of silk proteins in biomedical fields.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"14 36\",\"pages\":\"8145–8150\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.3c01995\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.3c01995","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

细胞、组织和器官的低温保存在基础研究和实际应用中都是必不可少的,例如现代再生医学和技术应用。然而,在冰重结晶过程中形成的冰晶可能对生物系统产生有害甚至致命的影响。为了解决这一挑战,我们研究了家蚕两种天然丝蛋白丝素蛋白和丝胶蛋白的冰重结晶抑制(IRI)活性。结果表明,丝素蛋白(SF)比丝胶蛋白(SS)具有更高的抑制冰重结晶的活性。此外,SF水溶液对冰重结晶的抑制作用优于SF磷酸盐缓冲盐水溶液。和频产生谱分析表明,较强的静电相互作用是SF具有较高的IRI能力的原因。本研究对拓展丝蛋白在生物医学领域的应用具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ice Recrystallization Inhibition Activity of Silk Proteins

Ice Recrystallization Inhibition Activity of Silk Proteins

The cryopreservation of cells, tissue, and organs is essential in both fundamental research and practical applications, such as modern regenerative medicine and technological applications. However, the formation of ice crystals during ice recrystallization can have harmful or even fatal effects on biological systems. To address this challenge, we explore the ice recrystallization inhibition (IRI) activity of two natural silk proteins of Bombyx mori, fibroin and sericin. We found that silk fibroin (SF) had higher ice recrystallization inhibition activity than silk sericin (SS). Moreover, SF aqueous solutions perform better in inhibiting ice recrystallization than SF phosphate-buffered saline solutions. Sum-frequency generation spectroscopy shows that stronger electrostatic interactions are responsible for the higher IRI ability of SF. This work is significant for broadening the applications of silk proteins in biomedical fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信