{"title":"氮素和土壤水分对温带森林红松和黑椴幼树叶片呼吸的影响","authors":"J. Sun, F. Yao","doi":"10.15666/aeer/2102_10611074","DOIUrl":null,"url":null,"abstract":". Leaf respiration drives plant energy use and greatly influences global carbon balance. It is inhibited by light. The climate-driven effects of changes in nitrogen deposition and soil moisture on leaf respiration in light ( R L ) are not well understood. To better understand the response of R L and its inhibition by light, we experimentally determined R L and light inhibition degree, an index of the inhibitory effect of light on leaf respiration with respect to dark leaf respiration, for potted specimens of an evergreen conifer species ( Pinus koraiensis ) and a deciduous broadleaved species ( Tilia amurensis ) in Changbai Mountains forests that were subjected to soil nitrogen and moisture treatments. R L increased as nitrogen deposition increased to a particular level (46 kg/ha/y N), when enzymes and mineral nutrients became imbalanced. R L decreased as soil moisture decreased to a drought level. Light inhibition degree behaved inversely to R L , and the average range for both species combined was 42.0%–78.4% for nitrogen treatments and 58.3%–87.0% for soil moisture treatments. The results are fundamental to accurate modeling of terrestrial carbon budgets and assessment of the carbon economy in forest ecosystems in a rapidly changing climate.","PeriodicalId":7975,"journal":{"name":"Applied Ecology and Environmental Research","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EFFECT OF NITROGEN AND SOIL WATER ON LEAF RESPIRATION OF PINUS KORAIENSIS AND TILIA AMURENSIS SAPLINGS IN A TEMPERATE FOREST\",\"authors\":\"J. Sun, F. Yao\",\"doi\":\"10.15666/aeer/2102_10611074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Leaf respiration drives plant energy use and greatly influences global carbon balance. It is inhibited by light. The climate-driven effects of changes in nitrogen deposition and soil moisture on leaf respiration in light ( R L ) are not well understood. To better understand the response of R L and its inhibition by light, we experimentally determined R L and light inhibition degree, an index of the inhibitory effect of light on leaf respiration with respect to dark leaf respiration, for potted specimens of an evergreen conifer species ( Pinus koraiensis ) and a deciduous broadleaved species ( Tilia amurensis ) in Changbai Mountains forests that were subjected to soil nitrogen and moisture treatments. R L increased as nitrogen deposition increased to a particular level (46 kg/ha/y N), when enzymes and mineral nutrients became imbalanced. R L decreased as soil moisture decreased to a drought level. Light inhibition degree behaved inversely to R L , and the average range for both species combined was 42.0%–78.4% for nitrogen treatments and 58.3%–87.0% for soil moisture treatments. The results are fundamental to accurate modeling of terrestrial carbon budgets and assessment of the carbon economy in forest ecosystems in a rapidly changing climate.\",\"PeriodicalId\":7975,\"journal\":{\"name\":\"Applied Ecology and Environmental Research\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Ecology and Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.15666/aeer/2102_10611074\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ecology and Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.15666/aeer/2102_10611074","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
EFFECT OF NITROGEN AND SOIL WATER ON LEAF RESPIRATION OF PINUS KORAIENSIS AND TILIA AMURENSIS SAPLINGS IN A TEMPERATE FOREST
. Leaf respiration drives plant energy use and greatly influences global carbon balance. It is inhibited by light. The climate-driven effects of changes in nitrogen deposition and soil moisture on leaf respiration in light ( R L ) are not well understood. To better understand the response of R L and its inhibition by light, we experimentally determined R L and light inhibition degree, an index of the inhibitory effect of light on leaf respiration with respect to dark leaf respiration, for potted specimens of an evergreen conifer species ( Pinus koraiensis ) and a deciduous broadleaved species ( Tilia amurensis ) in Changbai Mountains forests that were subjected to soil nitrogen and moisture treatments. R L increased as nitrogen deposition increased to a particular level (46 kg/ha/y N), when enzymes and mineral nutrients became imbalanced. R L decreased as soil moisture decreased to a drought level. Light inhibition degree behaved inversely to R L , and the average range for both species combined was 42.0%–78.4% for nitrogen treatments and 58.3%–87.0% for soil moisture treatments. The results are fundamental to accurate modeling of terrestrial carbon budgets and assessment of the carbon economy in forest ecosystems in a rapidly changing climate.
期刊介绍:
The Journal publishes original research papers and review articles. Researchers from all countries are invited to publish pure or applied ecological, environmental, biogeographical, zoological, botanical, paleontological, biometrical-biomathematical and quantitative ecological or multidisciplinary agricultural research of international interest on its pages.
The focus is on topics such as:
-Community, ecosystem and global ecology-
Biometrics, theoretical- and quantitative ecology-
Multidisciplinary agricultural and environmental research-
Sustainable and organic agriculture, natural resource management-
Ecological methodology, monitoring and modeling-
Biodiversity and ecosystem research, microbiology, botany and zoology-
Biostatistics and modeling in epidemiology, public health and veterinary-
Earth history, paleontology, extinctions, biogeography, biogeochemistry-
Conservation biology, environmental protection-
Ecological economics, natural capital and ecosystem services-
Climatology, meteorology, climate change, climate-ecology.
The Journal publishes theoretical papers as well as application-oriented contributions and practical case studies. There is no bias with regard to taxon or geographical area. Purely descriptive papers (like only taxonomic lists) will not be accepted for publication.