过氧化氢分解产物加压解罐的探讨

Pub Date : 2021-01-01 DOI:10.15407/knit2021.05.003
M. V. Andriievskyi, Y. Mitikov
{"title":"过氧化氢分解产物加压解罐的探讨","authors":"M. V. Andriievskyi, Y. Mitikov","doi":"10.15407/knit2021.05.003","DOIUrl":null,"url":null,"abstract":"Aim. To find and confirm the possibility of hydrogen peroxide tank pressurization using high-temperature pressurization gas (~1100К) with a high percentage of steam (up to 70%) without its losses. Research methods. Mathematical modeling of pressurization system parameters with the theory of mass transfer and thermodynamic of variable mass bodies have been used. Results. The conducted research allowed us to find and confirm the possibility of using a new pressurization method with additional sources of heat and elaborate recommendations for its appliance during pressurization time. Scientific novelty. The main processes have been determined, which prevent implementation of the efficient high-temperature pressurization system of the tank with the hydrogen peroxide using peroxide decomposition products. The main obstacle is the volume condensation of vapor in the free volume of the tank when heat exchange processes with boundary surfaces take place. For the first time, by means of theoretical calculations, the expediency and rationality of using the additional sources of heat such as high-temperature combustion product of solid-fuel gas generator based on sodium azide have been proved. Using of this additional source for the first 30 seconds of engine operation has been proved. Practical value. Methodology of pressurization system parameters’ calculation was supplemented with discovered thermodynamic relation, which allowed us to calculate the amount of vapor and take some measures to eliminate the condensation. Results of the research allowed the designation of the pressurization system for the highly concentrated hydrogen peroxide tank with a high value of length to diameter relation with its high-temperature decomposition products.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approach to solution of tank with hydrogen peroxide pressurization by its decomposition products\",\"authors\":\"M. V. Andriievskyi, Y. Mitikov\",\"doi\":\"10.15407/knit2021.05.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aim. To find and confirm the possibility of hydrogen peroxide tank pressurization using high-temperature pressurization gas (~1100К) with a high percentage of steam (up to 70%) without its losses. Research methods. Mathematical modeling of pressurization system parameters with the theory of mass transfer and thermodynamic of variable mass bodies have been used. Results. The conducted research allowed us to find and confirm the possibility of using a new pressurization method with additional sources of heat and elaborate recommendations for its appliance during pressurization time. Scientific novelty. The main processes have been determined, which prevent implementation of the efficient high-temperature pressurization system of the tank with the hydrogen peroxide using peroxide decomposition products. The main obstacle is the volume condensation of vapor in the free volume of the tank when heat exchange processes with boundary surfaces take place. For the first time, by means of theoretical calculations, the expediency and rationality of using the additional sources of heat such as high-temperature combustion product of solid-fuel gas generator based on sodium azide have been proved. Using of this additional source for the first 30 seconds of engine operation has been proved. Practical value. Methodology of pressurization system parameters’ calculation was supplemented with discovered thermodynamic relation, which allowed us to calculate the amount of vapor and take some measures to eliminate the condensation. Results of the research allowed the designation of the pressurization system for the highly concentrated hydrogen peroxide tank with a high value of length to diameter relation with its high-temperature decomposition products.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/knit2021.05.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/knit2021.05.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

的目标。寻找并确认使用高蒸汽百分比(高达70%)的高温加压气体(~1100К)对过氧化氢罐加压而不损失的可能性。研究方法。应用传质理论和变质量体热力学理论对增压系统参数进行了数学建模。结果。所进行的研究使我们能够找到并确认使用带有额外热源的新加压方法的可能性,并详细建议在加压期间使用该加压方法。科学的新奇。确定了阻碍利用过氧化氢分解产物对储罐进行高效高温加压的主要工艺过程。主要的障碍是当与边界面的热交换过程发生时,罐内自由体积内蒸汽的体积冷凝。通过理论计算,首次证明了叠氮化钠固体燃料燃气发生器高温燃烧产物作为附加热源的方便性和合理性。在发动机运行的前30秒内使用这种附加源已得到证实。实用价值。利用发现的热力学关系补充了增压系统参数的计算方法,使我们能够计算出蒸汽量,并采取措施消除冷凝。根据研究结果,设计了具有高长径与高温分解产物关系的高浓度过氧化氢储罐增压系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Approach to solution of tank with hydrogen peroxide pressurization by its decomposition products
Aim. To find and confirm the possibility of hydrogen peroxide tank pressurization using high-temperature pressurization gas (~1100К) with a high percentage of steam (up to 70%) without its losses. Research methods. Mathematical modeling of pressurization system parameters with the theory of mass transfer and thermodynamic of variable mass bodies have been used. Results. The conducted research allowed us to find and confirm the possibility of using a new pressurization method with additional sources of heat and elaborate recommendations for its appliance during pressurization time. Scientific novelty. The main processes have been determined, which prevent implementation of the efficient high-temperature pressurization system of the tank with the hydrogen peroxide using peroxide decomposition products. The main obstacle is the volume condensation of vapor in the free volume of the tank when heat exchange processes with boundary surfaces take place. For the first time, by means of theoretical calculations, the expediency and rationality of using the additional sources of heat such as high-temperature combustion product of solid-fuel gas generator based on sodium azide have been proved. Using of this additional source for the first 30 seconds of engine operation has been proved. Practical value. Methodology of pressurization system parameters’ calculation was supplemented with discovered thermodynamic relation, which allowed us to calculate the amount of vapor and take some measures to eliminate the condensation. Results of the research allowed the designation of the pressurization system for the highly concentrated hydrogen peroxide tank with a high value of length to diameter relation with its high-temperature decomposition products.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信