Juge Liu, Xiyu Yao, Dawei Yun, Man Zhang, C. Qian, Jun Liu
{"title":"季铵壳聚糖、聚乙烯醇和荔枝果皮提取物活性包装膜的研制","authors":"Juge Liu, Xiyu Yao, Dawei Yun, Man Zhang, C. Qian, Jun Liu","doi":"10.15586/qas.v13isp2.945","DOIUrl":null,"url":null,"abstract":"Litchi (Litchi chinensis Sonn.) pericarp contains abundant polyphenols that are suitable materials for developing active packaging films. In this study, 1 wt%, 3 wt% and 5 wt% of litchi pericarp extract (LPE) was added into qua-ternary ammonium chitosan (QAC) and polyvinyl alcohol (PVA) matrix to develop active packaging films. The structural, physical and functional properties of QAC-PVA (QP) films were compared with LPE (QP-LPE films) and without LPE (QP films). Results showed QP film had a heterogenous cross-section whereas QP-LPE films displayed rough and uneven cross-sections. After adding LPE, the N–H, O–H, C–H and C=O stretching bands of QP films shifted due to the formation of intermolecular interactions between LPE and film matrix. LPE made the colorless QP film turned brown. QP-LPE films presented lower ultraviolet–visible light transmittance than QP film. After adding LPE, film thickness increased from 0.091 to 0.103 mm, film water vapor permeability increased from 14.98 × 10−11 to 17.21 × 10−11 g m−1 s−1 Pa−1, film oxygen permeability increased from 0.16 to 0.22 cm3 mm m−2 day−1 atm−1, film tensile strength increased from 14.10 to 17.41 MPa, and film elongation at break decreased from 36.94% to 25.13%. QP-LPE films quickly released polyphenols in distilled water within 4 h and displayed potent antioxidant activity. The antimicrobial ratio of the film against Escherichia coli, Salmonella typhimurium, Staphylococcus aureus and Listeria monocytogenes was elevated from 50.40−68.04% to 58.93−91.38% after adding LPE. Results suggested QP-LPE films could be utilized as antioxidant and antimicrobial packaging materials in food industry.","PeriodicalId":20868,"journal":{"name":"Quality Assurance and Safety of Crops & Foods","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Development of active packaging films based on quaternary ammonium chitosan, polyvinyl alcohol and litchi (Litchi chinensis Sonn.) pericarp extract\",\"authors\":\"Juge Liu, Xiyu Yao, Dawei Yun, Man Zhang, C. Qian, Jun Liu\",\"doi\":\"10.15586/qas.v13isp2.945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Litchi (Litchi chinensis Sonn.) pericarp contains abundant polyphenols that are suitable materials for developing active packaging films. In this study, 1 wt%, 3 wt% and 5 wt% of litchi pericarp extract (LPE) was added into qua-ternary ammonium chitosan (QAC) and polyvinyl alcohol (PVA) matrix to develop active packaging films. The structural, physical and functional properties of QAC-PVA (QP) films were compared with LPE (QP-LPE films) and without LPE (QP films). Results showed QP film had a heterogenous cross-section whereas QP-LPE films displayed rough and uneven cross-sections. After adding LPE, the N–H, O–H, C–H and C=O stretching bands of QP films shifted due to the formation of intermolecular interactions between LPE and film matrix. LPE made the colorless QP film turned brown. QP-LPE films presented lower ultraviolet–visible light transmittance than QP film. After adding LPE, film thickness increased from 0.091 to 0.103 mm, film water vapor permeability increased from 14.98 × 10−11 to 17.21 × 10−11 g m−1 s−1 Pa−1, film oxygen permeability increased from 0.16 to 0.22 cm3 mm m−2 day−1 atm−1, film tensile strength increased from 14.10 to 17.41 MPa, and film elongation at break decreased from 36.94% to 25.13%. QP-LPE films quickly released polyphenols in distilled water within 4 h and displayed potent antioxidant activity. The antimicrobial ratio of the film against Escherichia coli, Salmonella typhimurium, Staphylococcus aureus and Listeria monocytogenes was elevated from 50.40−68.04% to 58.93−91.38% after adding LPE. Results suggested QP-LPE films could be utilized as antioxidant and antimicrobial packaging materials in food industry.\",\"PeriodicalId\":20868,\"journal\":{\"name\":\"Quality Assurance and Safety of Crops & Foods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quality Assurance and Safety of Crops & Foods\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.15586/qas.v13isp2.945\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality Assurance and Safety of Crops & Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.15586/qas.v13isp2.945","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Development of active packaging films based on quaternary ammonium chitosan, polyvinyl alcohol and litchi (Litchi chinensis Sonn.) pericarp extract
Litchi (Litchi chinensis Sonn.) pericarp contains abundant polyphenols that are suitable materials for developing active packaging films. In this study, 1 wt%, 3 wt% and 5 wt% of litchi pericarp extract (LPE) was added into qua-ternary ammonium chitosan (QAC) and polyvinyl alcohol (PVA) matrix to develop active packaging films. The structural, physical and functional properties of QAC-PVA (QP) films were compared with LPE (QP-LPE films) and without LPE (QP films). Results showed QP film had a heterogenous cross-section whereas QP-LPE films displayed rough and uneven cross-sections. After adding LPE, the N–H, O–H, C–H and C=O stretching bands of QP films shifted due to the formation of intermolecular interactions between LPE and film matrix. LPE made the colorless QP film turned brown. QP-LPE films presented lower ultraviolet–visible light transmittance than QP film. After adding LPE, film thickness increased from 0.091 to 0.103 mm, film water vapor permeability increased from 14.98 × 10−11 to 17.21 × 10−11 g m−1 s−1 Pa−1, film oxygen permeability increased from 0.16 to 0.22 cm3 mm m−2 day−1 atm−1, film tensile strength increased from 14.10 to 17.41 MPa, and film elongation at break decreased from 36.94% to 25.13%. QP-LPE films quickly released polyphenols in distilled water within 4 h and displayed potent antioxidant activity. The antimicrobial ratio of the film against Escherichia coli, Salmonella typhimurium, Staphylococcus aureus and Listeria monocytogenes was elevated from 50.40−68.04% to 58.93−91.38% after adding LPE. Results suggested QP-LPE films could be utilized as antioxidant and antimicrobial packaging materials in food industry.
期刊介绍:
''Quality Assurance and Safety of Crops & Foods'' is an international peer-reviewed journal publishing research and review papers associated with the quality and safety of food and food sources including cereals, grains, oilseeds, fruits, root crops and animal sources. It targets both primary materials and their conversion to human foods. There is a strong focus on the development and application of new analytical tools and their potential for quality assessment, assurance, control and safety. The scope includes issues of risk assessment, traceability, authenticity, food security and socio-economic impacts. Manuscripts presenting novel data and information that are likely to significantly contribute to scientific knowledge in areas of food quality and safety will be considered.
''Quality Assurance and Safety of Crops & Foods'' provides a forum for all those working in the specialist field of food quality and safety to report on the progress and outcomes of their research.