核酸计算及其改变硅基技术的潜力

Seth G. Abels, Emil F Khisamutdinov
{"title":"核酸计算及其改变硅基技术的潜力","authors":"Seth G. Abels, Emil F Khisamutdinov","doi":"10.1515/rnan-2015-0003","DOIUrl":null,"url":null,"abstract":"Abstract Molecular computers have existed on our planet for more than 3.5 billion years. Molecular computing devices, composed of biological substances such as nucleic acids, are responsible for the logical processing of a variety of inputs, creating viable outputs that are key components of the cellular machinery of all living organisms. We have begun to adopt some of the structural and functional knowledge of the cellular apparatus in order to fabricate nucleic-acid-based molecular computers in vitro and in vivo. Nucleic acid computing is directly dependent on advances in DNA and RNA nanotechnology. The field is still emerging and a number of challenges persist. Perhaps the most salient among these is how to translate a variety of nucleic-acid-based logic gates, developed by numerous research laboratories, into the realm of silicon-based computing. This mini-review provides some basic information on the advances in nucleic-acid-based computing and its potential to serve as an alternative that can revolutionize silicon-based technology.","PeriodicalId":93282,"journal":{"name":"DNA and RNA nanotechnology","volume":"2 1","pages":"13 - 22"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/rnan-2015-0003","citationCount":"5","resultStr":"{\"title\":\"Nucleic Acid Computing and its Potential to Transform Silicon-Based Technology\",\"authors\":\"Seth G. Abels, Emil F Khisamutdinov\",\"doi\":\"10.1515/rnan-2015-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Molecular computers have existed on our planet for more than 3.5 billion years. Molecular computing devices, composed of biological substances such as nucleic acids, are responsible for the logical processing of a variety of inputs, creating viable outputs that are key components of the cellular machinery of all living organisms. We have begun to adopt some of the structural and functional knowledge of the cellular apparatus in order to fabricate nucleic-acid-based molecular computers in vitro and in vivo. Nucleic acid computing is directly dependent on advances in DNA and RNA nanotechnology. The field is still emerging and a number of challenges persist. Perhaps the most salient among these is how to translate a variety of nucleic-acid-based logic gates, developed by numerous research laboratories, into the realm of silicon-based computing. This mini-review provides some basic information on the advances in nucleic-acid-based computing and its potential to serve as an alternative that can revolutionize silicon-based technology.\",\"PeriodicalId\":93282,\"journal\":{\"name\":\"DNA and RNA nanotechnology\",\"volume\":\"2 1\",\"pages\":\"13 - 22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/rnan-2015-0003\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA and RNA nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/rnan-2015-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA and RNA nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rnan-2015-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

分子计算机已经在地球上存在了超过35亿年。由核酸等生物物质组成的分子计算设备负责对各种输入进行逻辑处理,产生可行的输出,这些输出是所有生物体细胞机器的关键组成部分。我们已经开始采用一些细胞装置的结构和功能知识,以便在体外和体内制造基于核酸的分子计算机。核酸计算直接依赖于DNA和RNA纳米技术的进步。该领域仍处于新兴阶段,许多挑战依然存在。也许其中最突出的是如何将众多研究实验室开发的各种基于核酸的逻辑门转化为基于硅的计算领域。这篇小型综述提供了一些关于基于核酸的计算进展的基本信息,以及它作为一种可能彻底改变基于硅的技术的替代方案的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nucleic Acid Computing and its Potential to Transform Silicon-Based Technology
Abstract Molecular computers have existed on our planet for more than 3.5 billion years. Molecular computing devices, composed of biological substances such as nucleic acids, are responsible for the logical processing of a variety of inputs, creating viable outputs that are key components of the cellular machinery of all living organisms. We have begun to adopt some of the structural and functional knowledge of the cellular apparatus in order to fabricate nucleic-acid-based molecular computers in vitro and in vivo. Nucleic acid computing is directly dependent on advances in DNA and RNA nanotechnology. The field is still emerging and a number of challenges persist. Perhaps the most salient among these is how to translate a variety of nucleic-acid-based logic gates, developed by numerous research laboratories, into the realm of silicon-based computing. This mini-review provides some basic information on the advances in nucleic-acid-based computing and its potential to serve as an alternative that can revolutionize silicon-based technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信