{"title":"非线性热辐射麦克斯韦流体非定常对流边界层流动的数值研究","authors":"F. Mabood, M. Imtiaz, A. Alsaedi, T. Hayat","doi":"10.1515/ijnsns-2015-0153","DOIUrl":null,"url":null,"abstract":"Abstract The main purpose of this work is to investigate unsteady magnetohydrodynamic (MHD) boundary layer flow of Maxwell fluid over a stretching surface with nonlinear thermal radiation. Heat and mass transfer analysis is carried out in the presence of convective boundary conditions and first-order chemical reaction. A uniform magnetic field is applied normal to the direction of the fluid flow. The nonlinear coupled partial differential equations are solved numerically using an implicit finite difference method with quasi-linearization technique. Effects of the emerging parameters on the dimensionless velocity, temperature and concentration are investigated. The rate of heat transfer in terms of Nusselt number and rate of mass transfer in terms of Sherwood number are also computed and addressed.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijnsns-2015-0153","citationCount":"35","resultStr":"{\"title\":\"Unsteady Convective Boundary Layer Flow of Maxwell Fluid with Nonlinear Thermal Radiation: A Numerical Study\",\"authors\":\"F. Mabood, M. Imtiaz, A. Alsaedi, T. Hayat\",\"doi\":\"10.1515/ijnsns-2015-0153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The main purpose of this work is to investigate unsteady magnetohydrodynamic (MHD) boundary layer flow of Maxwell fluid over a stretching surface with nonlinear thermal radiation. Heat and mass transfer analysis is carried out in the presence of convective boundary conditions and first-order chemical reaction. A uniform magnetic field is applied normal to the direction of the fluid flow. The nonlinear coupled partial differential equations are solved numerically using an implicit finite difference method with quasi-linearization technique. Effects of the emerging parameters on the dimensionless velocity, temperature and concentration are investigated. The rate of heat transfer in terms of Nusselt number and rate of mass transfer in terms of Sherwood number are also computed and addressed.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/ijnsns-2015-0153\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijnsns-2015-0153\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2015-0153","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Unsteady Convective Boundary Layer Flow of Maxwell Fluid with Nonlinear Thermal Radiation: A Numerical Study
Abstract The main purpose of this work is to investigate unsteady magnetohydrodynamic (MHD) boundary layer flow of Maxwell fluid over a stretching surface with nonlinear thermal radiation. Heat and mass transfer analysis is carried out in the presence of convective boundary conditions and first-order chemical reaction. A uniform magnetic field is applied normal to the direction of the fluid flow. The nonlinear coupled partial differential equations are solved numerically using an implicit finite difference method with quasi-linearization technique. Effects of the emerging parameters on the dimensionless velocity, temperature and concentration are investigated. The rate of heat transfer in terms of Nusselt number and rate of mass transfer in terms of Sherwood number are also computed and addressed.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.