P. Cozma, E. Drăgoi, I. Mămăligă, S. Curteanu, W. Wukovits, A. Friedl, M. Gavrilescu
{"title":"基于克隆选择算法的人工神经网络气动接触器CO2吸收建模与优化","authors":"P. Cozma, E. Drăgoi, I. Mămăligă, S. Curteanu, W. Wukovits, A. Friedl, M. Gavrilescu","doi":"10.1515/ijnsns-2014-0052","DOIUrl":null,"url":null,"abstract":"Abstract Our research focuses on the application of airlift contactors (ALRs) for the decontamination of CO2-containing gas streams, such as biogas. To assess the performance of ALRs during CO2 absorption, a complex experimental programme was applied in a laboratory-scale rectangular pneumatic contactor, able to operate either as a bubble column or as an airlift reactor. Using the experimental data, a model based on artificial neural network (ANN) was developed. The algorithm for determining the optimal neural network model and for reactor optimization is clonal selection (CS), belonging to artificial immune system class, which is a new computational intelligence paradigm based on the principles of the vertebrate immune system. To improve its capabilities and the probability for highly suitable models and input combinations, addressing maximum efficiency, a Back-Propagation (BK) algorithm – a supervised learning method based on the delta rule – is used as a local search procedure. It is applied in a greedy manner for the best antibody found in each generation. Since the highest affinity antibodies are cloned in the next generation, the effect of BK on the suitability of the individuals propagates into a large proportion of the population. In parallel with the BK hybridization of the basic CS–ANN combination, a series of normalization procedures are included for improving the overall results provided by the new algorithm called nCS-MBK (normalized Clonal Selection-Multilayer Perceptron Neural Network and Back-Propagation algorithm). The optimization allowed for achieving the optimal reactor configuration, which leads to a maximum amount of CO2 dissolved in water.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijnsns-2014-0052","citationCount":"4","resultStr":"{\"title\":\"Modelling and Optimization of CO2 Absorption in Pneumatic Contactors Using Artificial Neural Networks Developed with Clonal Selection-Based Algorithm\",\"authors\":\"P. Cozma, E. Drăgoi, I. Mămăligă, S. Curteanu, W. Wukovits, A. Friedl, M. Gavrilescu\",\"doi\":\"10.1515/ijnsns-2014-0052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Our research focuses on the application of airlift contactors (ALRs) for the decontamination of CO2-containing gas streams, such as biogas. To assess the performance of ALRs during CO2 absorption, a complex experimental programme was applied in a laboratory-scale rectangular pneumatic contactor, able to operate either as a bubble column or as an airlift reactor. Using the experimental data, a model based on artificial neural network (ANN) was developed. The algorithm for determining the optimal neural network model and for reactor optimization is clonal selection (CS), belonging to artificial immune system class, which is a new computational intelligence paradigm based on the principles of the vertebrate immune system. To improve its capabilities and the probability for highly suitable models and input combinations, addressing maximum efficiency, a Back-Propagation (BK) algorithm – a supervised learning method based on the delta rule – is used as a local search procedure. It is applied in a greedy manner for the best antibody found in each generation. Since the highest affinity antibodies are cloned in the next generation, the effect of BK on the suitability of the individuals propagates into a large proportion of the population. In parallel with the BK hybridization of the basic CS–ANN combination, a series of normalization procedures are included for improving the overall results provided by the new algorithm called nCS-MBK (normalized Clonal Selection-Multilayer Perceptron Neural Network and Back-Propagation algorithm). The optimization allowed for achieving the optimal reactor configuration, which leads to a maximum amount of CO2 dissolved in water.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2015-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/ijnsns-2014-0052\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijnsns-2014-0052\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2014-0052","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Modelling and Optimization of CO2 Absorption in Pneumatic Contactors Using Artificial Neural Networks Developed with Clonal Selection-Based Algorithm
Abstract Our research focuses on the application of airlift contactors (ALRs) for the decontamination of CO2-containing gas streams, such as biogas. To assess the performance of ALRs during CO2 absorption, a complex experimental programme was applied in a laboratory-scale rectangular pneumatic contactor, able to operate either as a bubble column or as an airlift reactor. Using the experimental data, a model based on artificial neural network (ANN) was developed. The algorithm for determining the optimal neural network model and for reactor optimization is clonal selection (CS), belonging to artificial immune system class, which is a new computational intelligence paradigm based on the principles of the vertebrate immune system. To improve its capabilities and the probability for highly suitable models and input combinations, addressing maximum efficiency, a Back-Propagation (BK) algorithm – a supervised learning method based on the delta rule – is used as a local search procedure. It is applied in a greedy manner for the best antibody found in each generation. Since the highest affinity antibodies are cloned in the next generation, the effect of BK on the suitability of the individuals propagates into a large proportion of the population. In parallel with the BK hybridization of the basic CS–ANN combination, a series of normalization procedures are included for improving the overall results provided by the new algorithm called nCS-MBK (normalized Clonal Selection-Multilayer Perceptron Neural Network and Back-Propagation algorithm). The optimization allowed for achieving the optimal reactor configuration, which leads to a maximum amount of CO2 dissolved in water.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.