过表达茶树CsPSY1基因,编码一种植物烯合成酶,可提高胡萝卜中α-胡萝卜素和β-胡萝卜素的含量。

IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Molecular Biotechnology Pub Date : 2024-11-01 Epub Date: 2023-10-28 DOI:10.1007/s12033-023-00942-5
Jing-Wen Li, Ping Zhou, Yuan-Jie Deng, Zhi-Hang Hu, Xing-Hui Li, Xuan Chen, Ai-Sheng Xiong, Jing Zhuang
{"title":"过表达茶树CsPSY1基因,编码一种植物烯合成酶,可提高胡萝卜中α-胡萝卜素和β-胡萝卜素的含量。","authors":"Jing-Wen Li, Ping Zhou, Yuan-Jie Deng, Zhi-Hang Hu, Xing-Hui Li, Xuan Chen, Ai-Sheng Xiong, Jing Zhuang","doi":"10.1007/s12033-023-00942-5","DOIUrl":null,"url":null,"abstract":"<p><p>Tea plants (Camellia sinensis (L.) O. Kuntze) belong to Theaceae family, in the section Thea. Tea plants are widely distributed in subtropical and tropical regions in the word. α-carotene and β-carotene in the tea leaves belong to carotenoids, which are associated with the aroma and color of the tea. Phytoene synthase (PSY) is a rate-limiting enzyme in carotenoids biosynthesis. We identified three CsPSY genes in 'Shuchazao', named CsPSY1, CsPSY2, and CsPSY3. Structural analysis of three CsPSY genes showed that CsPSY1 had a longer intro structure. The cis-acting elements of CsPSYs promoter were mainly associated with light-responsiveness, abiotic stress-responsiveness, and hormone-responsiveness. CsPSY1 exhibited expression in all tissues of the tea plants, whereas CsPSY2 and CsPSY3 were trace expression levels in all tissues. The positive expression of CsPSY1 under hormonal and abiotic stresses suggested its role in plant development and defense responses. The amino acid sequence of CsPSY1 was highly conserved in eight tea cultivars. The recombinant vector pCAMBIA1301-CsPSY1 was constructed to stabilize the overexpression of CsPSY1 in carrot. The contents of α-carotene and β-carotene in transgenic carrot callus were significantly increased. This study provides a foundational basis for further research on the function of CsPSYs and carotenoids accumulation in tea plants.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"3311-3322"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overexpressing CsPSY1 Gene of Tea Plant, Encoding a Phytoene Synthase, Improves α-Carotene and β-Carotene Contents in Carrot.\",\"authors\":\"Jing-Wen Li, Ping Zhou, Yuan-Jie Deng, Zhi-Hang Hu, Xing-Hui Li, Xuan Chen, Ai-Sheng Xiong, Jing Zhuang\",\"doi\":\"10.1007/s12033-023-00942-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tea plants (Camellia sinensis (L.) O. Kuntze) belong to Theaceae family, in the section Thea. Tea plants are widely distributed in subtropical and tropical regions in the word. α-carotene and β-carotene in the tea leaves belong to carotenoids, which are associated with the aroma and color of the tea. Phytoene synthase (PSY) is a rate-limiting enzyme in carotenoids biosynthesis. We identified three CsPSY genes in 'Shuchazao', named CsPSY1, CsPSY2, and CsPSY3. Structural analysis of three CsPSY genes showed that CsPSY1 had a longer intro structure. The cis-acting elements of CsPSYs promoter were mainly associated with light-responsiveness, abiotic stress-responsiveness, and hormone-responsiveness. CsPSY1 exhibited expression in all tissues of the tea plants, whereas CsPSY2 and CsPSY3 were trace expression levels in all tissues. The positive expression of CsPSY1 under hormonal and abiotic stresses suggested its role in plant development and defense responses. The amino acid sequence of CsPSY1 was highly conserved in eight tea cultivars. The recombinant vector pCAMBIA1301-CsPSY1 was constructed to stabilize the overexpression of CsPSY1 in carrot. The contents of α-carotene and β-carotene in transgenic carrot callus were significantly increased. This study provides a foundational basis for further research on the function of CsPSYs and carotenoids accumulation in tea plants.</p>\",\"PeriodicalId\":18865,\"journal\":{\"name\":\"Molecular Biotechnology\",\"volume\":\" \",\"pages\":\"3311-3322\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12033-023-00942-5\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-023-00942-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

茶树属山茶科山茶科。茶树广泛分布于世界亚热带和热带地区。茶叶中的α-胡萝卜素和β-胡萝卜素属于类胡萝卜素,与茶叶的香气和色泽有关。植物烯合成酶(PSY)是类胡萝卜素生物合成中的限速酶。我们在“疏茶早”中鉴定了三个CsPSY基因,分别命名为CsPSY1、CsPSY2和CsPSY3。对三个CsPSY基因的结构分析表明,CsPSY1具有较长的导入结构。CsPSYs启动子的顺式作用元件主要与光反应性、非生物应激反应性和激素反应性有关。CsPSY1在茶树的所有组织中都表现出表达,而CsPSY2和CsPSY3在所有组织中均为微量表达水平。CsPSY1在激素和非生物胁迫下的阳性表达表明其在植物发育和防御反应中的作用。CsPSY1的氨基酸序列在8个茶树品种中高度保守。构建重组载体pCAMBIA1301-CsPSY1以稳定CsPSY1在胡萝卜中的过表达。转基因胡萝卜愈伤组织中α-胡萝卜素和β-胡萝卜素含量显著增加。本研究为进一步研究CsPSYs在茶树中的作用和类胡萝卜素积累提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Overexpressing CsPSY1 Gene of Tea Plant, Encoding a Phytoene Synthase, Improves α-Carotene and β-Carotene Contents in Carrot.

Overexpressing CsPSY1 Gene of Tea Plant, Encoding a Phytoene Synthase, Improves α-Carotene and β-Carotene Contents in Carrot.

Tea plants (Camellia sinensis (L.) O. Kuntze) belong to Theaceae family, in the section Thea. Tea plants are widely distributed in subtropical and tropical regions in the word. α-carotene and β-carotene in the tea leaves belong to carotenoids, which are associated with the aroma and color of the tea. Phytoene synthase (PSY) is a rate-limiting enzyme in carotenoids biosynthesis. We identified three CsPSY genes in 'Shuchazao', named CsPSY1, CsPSY2, and CsPSY3. Structural analysis of three CsPSY genes showed that CsPSY1 had a longer intro structure. The cis-acting elements of CsPSYs promoter were mainly associated with light-responsiveness, abiotic stress-responsiveness, and hormone-responsiveness. CsPSY1 exhibited expression in all tissues of the tea plants, whereas CsPSY2 and CsPSY3 were trace expression levels in all tissues. The positive expression of CsPSY1 under hormonal and abiotic stresses suggested its role in plant development and defense responses. The amino acid sequence of CsPSY1 was highly conserved in eight tea cultivars. The recombinant vector pCAMBIA1301-CsPSY1 was constructed to stabilize the overexpression of CsPSY1 in carrot. The contents of α-carotene and β-carotene in transgenic carrot callus were significantly increased. This study provides a foundational basis for further research on the function of CsPSYs and carotenoids accumulation in tea plants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Biotechnology
Molecular Biotechnology 医学-生化与分子生物学
CiteScore
4.10
自引率
3.80%
发文量
165
审稿时长
6 months
期刊介绍: Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信