Mana Kitao, Ai Yamaguchi, Takuma Tomioka, Kenji Kai, Yuki Kamei, Kenji Sugimoto, Mitsugu Akagawa
{"title":"虾青素通过清除单线态氧来保护人ARPE-19视网膜色素上皮细胞免受蓝光诱导的光毒性。","authors":"Mana Kitao, Ai Yamaguchi, Takuma Tomioka, Kenji Kai, Yuki Kamei, Kenji Sugimoto, Mitsugu Akagawa","doi":"10.1080/10715762.2023.2277144","DOIUrl":null,"url":null,"abstract":"<p><p>Age-related macular degeneration (AMD) is one of an increasing number of diseases that causes irreversible impairment and loss of vision in the elderly. AMD occurs by oxidative stress-mediated apoptosis of retinal pigment epithelium cells. The onset of AMD may be positively correlated with the exposure to blue light. We screened food-derived carotenoids for cytoprotective action against blue light irradiation using human ARPE-19 retinal pigment epithelium cells. This study revealed that blue light irradiation triggered apoptosis and oxidative stress in all-<i>trans</i>-retinal (atRAL)-exposed ARPE-19 cells by generating singlet oxygen (<sup>1</sup>O<sub>2</sub>), leading to significant cell death. We found that astaxanthin, a potent anti-oxidative xanthophyll abundant in several marine organisms including microalgae, salmon, and shrimp, significantly suppresses blue light-induced apoptotic cell death of atRAL-exposed ARPE-19 cells by scavenging <sup>1</sup>O<sub>2</sub>. Mechanistic studies using the blue-light irradiated cells also demonstrated that the cytoprotective effects of astaxanthin can be attributed to scavenging of <sup>1</sup>O<sub>2</sub> directly. Our results suggest the potential value of astaxanthin as a dietary strategy to prevent blue light-induced retinal degeneration including AMD.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Astaxanthin protects human ARPE-19 retinal pigment epithelium cells from blue light-induced phototoxicity by scavenging singlet oxygen.\",\"authors\":\"Mana Kitao, Ai Yamaguchi, Takuma Tomioka, Kenji Kai, Yuki Kamei, Kenji Sugimoto, Mitsugu Akagawa\",\"doi\":\"10.1080/10715762.2023.2277144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Age-related macular degeneration (AMD) is one of an increasing number of diseases that causes irreversible impairment and loss of vision in the elderly. AMD occurs by oxidative stress-mediated apoptosis of retinal pigment epithelium cells. The onset of AMD may be positively correlated with the exposure to blue light. We screened food-derived carotenoids for cytoprotective action against blue light irradiation using human ARPE-19 retinal pigment epithelium cells. This study revealed that blue light irradiation triggered apoptosis and oxidative stress in all-<i>trans</i>-retinal (atRAL)-exposed ARPE-19 cells by generating singlet oxygen (<sup>1</sup>O<sub>2</sub>), leading to significant cell death. We found that astaxanthin, a potent anti-oxidative xanthophyll abundant in several marine organisms including microalgae, salmon, and shrimp, significantly suppresses blue light-induced apoptotic cell death of atRAL-exposed ARPE-19 cells by scavenging <sup>1</sup>O<sub>2</sub>. Mechanistic studies using the blue-light irradiated cells also demonstrated that the cytoprotective effects of astaxanthin can be attributed to scavenging of <sup>1</sup>O<sub>2</sub> directly. Our results suggest the potential value of astaxanthin as a dietary strategy to prevent blue light-induced retinal degeneration including AMD.</p>\",\"PeriodicalId\":12411,\"journal\":{\"name\":\"Free Radical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Free Radical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/10715762.2023.2277144\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10715762.2023.2277144","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Astaxanthin protects human ARPE-19 retinal pigment epithelium cells from blue light-induced phototoxicity by scavenging singlet oxygen.
Age-related macular degeneration (AMD) is one of an increasing number of diseases that causes irreversible impairment and loss of vision in the elderly. AMD occurs by oxidative stress-mediated apoptosis of retinal pigment epithelium cells. The onset of AMD may be positively correlated with the exposure to blue light. We screened food-derived carotenoids for cytoprotective action against blue light irradiation using human ARPE-19 retinal pigment epithelium cells. This study revealed that blue light irradiation triggered apoptosis and oxidative stress in all-trans-retinal (atRAL)-exposed ARPE-19 cells by generating singlet oxygen (1O2), leading to significant cell death. We found that astaxanthin, a potent anti-oxidative xanthophyll abundant in several marine organisms including microalgae, salmon, and shrimp, significantly suppresses blue light-induced apoptotic cell death of atRAL-exposed ARPE-19 cells by scavenging 1O2. Mechanistic studies using the blue-light irradiated cells also demonstrated that the cytoprotective effects of astaxanthin can be attributed to scavenging of 1O2 directly. Our results suggest the potential value of astaxanthin as a dietary strategy to prevent blue light-induced retinal degeneration including AMD.
期刊介绍:
Free Radical Research publishes high-quality research papers, hypotheses and reviews in free radicals and other reactive species in biological, clinical, environmental and other systems; redox signalling; antioxidants, including diet-derived antioxidants and other relevant aspects of human nutrition; and oxidative damage, mechanisms and measurement.