化合物中的电子非弹性平均自由程

S. Tanuma, H. Shinotsuka, C. Powell, D. R. Penn
{"title":"化合物中的电子非弹性平均自由程","authors":"S. Tanuma, H. Shinotsuka, C. Powell, D. R. Penn","doi":"10.1384/jsa.26.106","DOIUrl":null,"url":null,"abstract":"We have calculated inelastic mean free paths (IMFPs) for 45 compounds for electron energies over the 50 eV to 200 keV range with the full Penn algorithm from the energy-loss functions of the compounds. Our calculated IMFPs could be fitted to a modified form of the relativistic Bethe equation for inelastic scattering in matter for energies from 50 eV to 200 keV. The average root-mean-square deviation in these fits was 0.60 %. The IMFPs were also compared with a relativistic version of our predictive Tanuma-Powell-Penn (TPP-2M) equation.","PeriodicalId":90628,"journal":{"name":"Journal of surface analysis (Online)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Electron inelastic mean free paths in compounds\",\"authors\":\"S. Tanuma, H. Shinotsuka, C. Powell, D. R. Penn\",\"doi\":\"10.1384/jsa.26.106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have calculated inelastic mean free paths (IMFPs) for 45 compounds for electron energies over the 50 eV to 200 keV range with the full Penn algorithm from the energy-loss functions of the compounds. Our calculated IMFPs could be fitted to a modified form of the relativistic Bethe equation for inelastic scattering in matter for energies from 50 eV to 200 keV. The average root-mean-square deviation in these fits was 0.60 %. The IMFPs were also compared with a relativistic version of our predictive Tanuma-Powell-Penn (TPP-2M) equation.\",\"PeriodicalId\":90628,\"journal\":{\"name\":\"Journal of surface analysis (Online)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of surface analysis (Online)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1384/jsa.26.106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of surface analysis (Online)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1384/jsa.26.106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

从化合物的能量损失函数出发,用完整的Penn算法计算了45种化合物在50 ~ 200 keV范围内的电子能量的非弹性平均自由程(IMFPs)。我们计算的imfp可以拟合到能量从50ev到200kev的物质非弹性散射的相对论Bethe方程的修正形式。这些拟合的平均均方根偏差为0.60%。imfp还与我们预测的Tanuma-Powell-Penn (TPP-2M)方程的相对论版本进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electron inelastic mean free paths in compounds
We have calculated inelastic mean free paths (IMFPs) for 45 compounds for electron energies over the 50 eV to 200 keV range with the full Penn algorithm from the energy-loss functions of the compounds. Our calculated IMFPs could be fitted to a modified form of the relativistic Bethe equation for inelastic scattering in matter for energies from 50 eV to 200 keV. The average root-mean-square deviation in these fits was 0.60 %. The IMFPs were also compared with a relativistic version of our predictive Tanuma-Powell-Penn (TPP-2M) equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信