J. Rose, N. Hofstra, Erica Hollmann, P. Katsivelis, G. Medema, H. Murphy, C. Naughton, M. Verbyla
{"title":"全球微生物水质数据和预测分析:健康和实现可持续发展目标6的关键","authors":"J. Rose, N. Hofstra, Erica Hollmann, P. Katsivelis, G. Medema, H. Murphy, C. Naughton, M. Verbyla","doi":"10.1371/journal.pwat.0000166","DOIUrl":null,"url":null,"abstract":"Microbial water quality is an integral to water security and is directly linked to human health, food safety, and ecosystem services. However, specifically pathogen data and even faecal indicator data (e.g., E. coli), are sparse and scattered, and their availability in different water bodies (e.g., groundwater) and in different socio-economic contexts (e.g., low- and middle-income countries) are inequitable. There is an urgent need to assess and collate microbial data across the world to evaluate the global state of ambient water quality, water treatment, and health risk, as time is running out to meet Sustainable Development Goal (SDG) 6 by 2030. The overall goal of this paper is to illustrate the need and advocate for building a robust and useful microbial water quality database and consortium worldwide that will help achieve SDG 6. We summarize available data and existing databases on microbial water quality, discuss methods for producing new data on microbial water quality, and identify models and analytical tools that utilize microbial data to support decision making. This review identified global datasets (7 databases), and regional datasets for Africa (3 databases), Australia/New Zealand (6 databases), Asia (3 databases), Europe (7 databases), North America (12 databases) and South America (1 database). Data are missing for low- and middle-income countries. Increased laboratory capacity (due to COVID-19 pandemic) and molecular tools can identify potential pollution sources and monitor directly for pathogens. Models and analytical tools can support microbial water quality assessment by making geospatial and temporal inferences where data are lacking. A genomics, information technology (IT), and data revolution is upon us and presents unprecedented opportunities to develop software and devices for real-time logging, automated analysis, standardization, and modelling of microbial data to strengthen knowledge of global water quality. These opportunities should be leveraged for achieving SDG 6 around the world.","PeriodicalId":93672,"journal":{"name":"PLOS water","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global microbial water quality data and predictive analytics: Key to health and meeting SDG 6\",\"authors\":\"J. Rose, N. Hofstra, Erica Hollmann, P. Katsivelis, G. Medema, H. Murphy, C. Naughton, M. Verbyla\",\"doi\":\"10.1371/journal.pwat.0000166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microbial water quality is an integral to water security and is directly linked to human health, food safety, and ecosystem services. However, specifically pathogen data and even faecal indicator data (e.g., E. coli), are sparse and scattered, and their availability in different water bodies (e.g., groundwater) and in different socio-economic contexts (e.g., low- and middle-income countries) are inequitable. There is an urgent need to assess and collate microbial data across the world to evaluate the global state of ambient water quality, water treatment, and health risk, as time is running out to meet Sustainable Development Goal (SDG) 6 by 2030. The overall goal of this paper is to illustrate the need and advocate for building a robust and useful microbial water quality database and consortium worldwide that will help achieve SDG 6. We summarize available data and existing databases on microbial water quality, discuss methods for producing new data on microbial water quality, and identify models and analytical tools that utilize microbial data to support decision making. This review identified global datasets (7 databases), and regional datasets for Africa (3 databases), Australia/New Zealand (6 databases), Asia (3 databases), Europe (7 databases), North America (12 databases) and South America (1 database). Data are missing for low- and middle-income countries. Increased laboratory capacity (due to COVID-19 pandemic) and molecular tools can identify potential pollution sources and monitor directly for pathogens. Models and analytical tools can support microbial water quality assessment by making geospatial and temporal inferences where data are lacking. A genomics, information technology (IT), and data revolution is upon us and presents unprecedented opportunities to develop software and devices for real-time logging, automated analysis, standardization, and modelling of microbial data to strengthen knowledge of global water quality. These opportunities should be leveraged for achieving SDG 6 around the world.\",\"PeriodicalId\":93672,\"journal\":{\"name\":\"PLOS water\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLOS water\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pwat.0000166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS water","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pwat.0000166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Global microbial water quality data and predictive analytics: Key to health and meeting SDG 6
Microbial water quality is an integral to water security and is directly linked to human health, food safety, and ecosystem services. However, specifically pathogen data and even faecal indicator data (e.g., E. coli), are sparse and scattered, and their availability in different water bodies (e.g., groundwater) and in different socio-economic contexts (e.g., low- and middle-income countries) are inequitable. There is an urgent need to assess and collate microbial data across the world to evaluate the global state of ambient water quality, water treatment, and health risk, as time is running out to meet Sustainable Development Goal (SDG) 6 by 2030. The overall goal of this paper is to illustrate the need and advocate for building a robust and useful microbial water quality database and consortium worldwide that will help achieve SDG 6. We summarize available data and existing databases on microbial water quality, discuss methods for producing new data on microbial water quality, and identify models and analytical tools that utilize microbial data to support decision making. This review identified global datasets (7 databases), and regional datasets for Africa (3 databases), Australia/New Zealand (6 databases), Asia (3 databases), Europe (7 databases), North America (12 databases) and South America (1 database). Data are missing for low- and middle-income countries. Increased laboratory capacity (due to COVID-19 pandemic) and molecular tools can identify potential pollution sources and monitor directly for pathogens. Models and analytical tools can support microbial water quality assessment by making geospatial and temporal inferences where data are lacking. A genomics, information technology (IT), and data revolution is upon us and presents unprecedented opportunities to develop software and devices for real-time logging, automated analysis, standardization, and modelling of microbial data to strengthen knowledge of global water quality. These opportunities should be leveraged for achieving SDG 6 around the world.