{"title":"含稳态参数的质量-弹簧-阻尼器模型预测环热管中液柱运动和温度振荡","authors":"Ge Zhang, Dilei Chen, Ying-Jong Hong, Li Liu","doi":"10.11916/J.ISSN.1005-9113.2016.05.012","DOIUrl":null,"url":null,"abstract":"In order to investigate the mechanism of the temperature oscillation in loop heat pipes, this paper investigated the movement of the phase interface as the changed input power by a mass-spring-damper model. The model was solved with MATLAB and was used to explain the high-frequency and low-amplitude temperature oscillation. Temperature variation with the input power from 20 W to 75 W was investigated based on a LHP prototype in a literature. The model agreed well with the experimental data in the literature. The simulation results suggested that the movement of the liquid column was caused by the fluctuation of pressure difference applied on the liquid column and the stiffness coefficients of the vapor springs increasing with the input power. According to parameter analyses, the temperature oscillation at the outlet of the condenser can be weakened by increasing the mass of the liquid column and keeping the temperature at the outlet of the condenser steady.","PeriodicalId":39923,"journal":{"name":"Journal of Harbin Institute of Technology (New Series)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mass-Spring-Damper Model with Steady State Parameters for Predicting the Movement of Liquid Column and Temperature Oscillation in Loop Heat Pipe\",\"authors\":\"Ge Zhang, Dilei Chen, Ying-Jong Hong, Li Liu\",\"doi\":\"10.11916/J.ISSN.1005-9113.2016.05.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to investigate the mechanism of the temperature oscillation in loop heat pipes, this paper investigated the movement of the phase interface as the changed input power by a mass-spring-damper model. The model was solved with MATLAB and was used to explain the high-frequency and low-amplitude temperature oscillation. Temperature variation with the input power from 20 W to 75 W was investigated based on a LHP prototype in a literature. The model agreed well with the experimental data in the literature. The simulation results suggested that the movement of the liquid column was caused by the fluctuation of pressure difference applied on the liquid column and the stiffness coefficients of the vapor springs increasing with the input power. According to parameter analyses, the temperature oscillation at the outlet of the condenser can be weakened by increasing the mass of the liquid column and keeping the temperature at the outlet of the condenser steady.\",\"PeriodicalId\":39923,\"journal\":{\"name\":\"Journal of Harbin Institute of Technology (New Series)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Harbin Institute of Technology (New Series)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11916/J.ISSN.1005-9113.2016.05.012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Harbin Institute of Technology (New Series)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11916/J.ISSN.1005-9113.2016.05.012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Mass-Spring-Damper Model with Steady State Parameters for Predicting the Movement of Liquid Column and Temperature Oscillation in Loop Heat Pipe
In order to investigate the mechanism of the temperature oscillation in loop heat pipes, this paper investigated the movement of the phase interface as the changed input power by a mass-spring-damper model. The model was solved with MATLAB and was used to explain the high-frequency and low-amplitude temperature oscillation. Temperature variation with the input power from 20 W to 75 W was investigated based on a LHP prototype in a literature. The model agreed well with the experimental data in the literature. The simulation results suggested that the movement of the liquid column was caused by the fluctuation of pressure difference applied on the liquid column and the stiffness coefficients of the vapor springs increasing with the input power. According to parameter analyses, the temperature oscillation at the outlet of the condenser can be weakened by increasing the mass of the liquid column and keeping the temperature at the outlet of the condenser steady.