Yong-Feng Shen, Meng-Meng Zhang, Dr. Dong Yan, Jia-He Lv, Dr. Tao Wu, Dr. Bin He, Prof. Wen-Cui Li
{"title":"表面效应改善的PF6−快速插层软碳作为双离子电池正极的高倍率性能","authors":"Yong-Feng Shen, Meng-Meng Zhang, Dr. Dong Yan, Jia-He Lv, Dr. Tao Wu, Dr. Bin He, Prof. Wen-Cui Li","doi":"10.1002/cssc.202300493","DOIUrl":null,"url":null,"abstract":"<p>Dual-ion battery is a new type of battery in which both anions and cations participate in the energy storage process. However, this unique battery configuration imposes high requirements on the cathode, which typically presents a poor rate performance due to the sluggish diffusion dynamics and intercalation reaction kinetics of anions. Herein, we report petroleum coke-based soft carbon as the cathode for dual-ion batteries, exhibiting a superior rate performance with a specific capacity of 96 mAh g<sup>−1</sup> at a rate of 2 C and 72 mAh g<sup>−1</sup> remained even at 50 C. In situ XRD and Raman demonstrate that the anions can directly form lower-stage graphite intercalation compounds during the charge process owing to the surface effect, skipping the long evolutionary process from higher to lower stage, thus significantly improving the rate performance. This study highlights the impact of the surface effect and provides a promising perspective for dual-ion batteries.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":"16 17","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Soft Carbon as Cathode with High Rate Performance for Dual-Ion Batteries via Fast PF6− Intercalation Improved by Surface Effect\",\"authors\":\"Yong-Feng Shen, Meng-Meng Zhang, Dr. Dong Yan, Jia-He Lv, Dr. Tao Wu, Dr. Bin He, Prof. Wen-Cui Li\",\"doi\":\"10.1002/cssc.202300493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dual-ion battery is a new type of battery in which both anions and cations participate in the energy storage process. However, this unique battery configuration imposes high requirements on the cathode, which typically presents a poor rate performance due to the sluggish diffusion dynamics and intercalation reaction kinetics of anions. Herein, we report petroleum coke-based soft carbon as the cathode for dual-ion batteries, exhibiting a superior rate performance with a specific capacity of 96 mAh g<sup>−1</sup> at a rate of 2 C and 72 mAh g<sup>−1</sup> remained even at 50 C. In situ XRD and Raman demonstrate that the anions can directly form lower-stage graphite intercalation compounds during the charge process owing to the surface effect, skipping the long evolutionary process from higher to lower stage, thus significantly improving the rate performance. This study highlights the impact of the surface effect and provides a promising perspective for dual-ion batteries.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\"16 17\",\"pages\":\"\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2023-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cssc.202300493\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cssc.202300493","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
摘要
双离子电池是一种阴离子和阳离子都参与储能过程的新型电池。然而,这种独特的电池结构对阴极提出了很高的要求,由于阴离子的扩散动力学和插层反应动力学缓慢,阴极通常表现出较差的倍率性能。在此,我们报道了石油焦基软碳作为双离子电池的阴极,在2℃的倍率下表现出优异的倍率性能,比容量为96 mAh g - 1,甚至在50℃时仍保持72 mAh g - 1。原位XRD和拉曼分析表明,阴离子在充电过程中由于表面效应直接形成低阶石墨插层化合物,跳过了从高阶到低阶的漫长演化过程,从而显著提高了速率性能。这项研究突出了表面效应的影响,为双离子电池提供了一个有希望的前景。
Soft Carbon as Cathode with High Rate Performance for Dual-Ion Batteries via Fast PF6− Intercalation Improved by Surface Effect
Dual-ion battery is a new type of battery in which both anions and cations participate in the energy storage process. However, this unique battery configuration imposes high requirements on the cathode, which typically presents a poor rate performance due to the sluggish diffusion dynamics and intercalation reaction kinetics of anions. Herein, we report petroleum coke-based soft carbon as the cathode for dual-ion batteries, exhibiting a superior rate performance with a specific capacity of 96 mAh g−1 at a rate of 2 C and 72 mAh g−1 remained even at 50 C. In situ XRD and Raman demonstrate that the anions can directly form lower-stage graphite intercalation compounds during the charge process owing to the surface effect, skipping the long evolutionary process from higher to lower stage, thus significantly improving the rate performance. This study highlights the impact of the surface effect and provides a promising perspective for dual-ion batteries.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology