Aidi Tong, Chunyi Tong, Jialong Fan, Jingyi Shen, Caiyun Yin, Zhou Wu, Jiansong Zhang and Bin Liu
{"title":"普鲁士蓝纳米酶辅助光动力疗法可有效根除糖尿病小鼠皮肤伤口的MRSA感染","authors":"Aidi Tong, Chunyi Tong, Jialong Fan, Jingyi Shen, Caiyun Yin, Zhou Wu, Jiansong Zhang and Bin Liu","doi":"10.1039/D3BM01039B","DOIUrl":null,"url":null,"abstract":"<p >Antibiotic therapy can induce the generation of severe bacterial resistance, further challenging the usability of currently available drugs and treatment options. Therefore, it is essential to develop new strategies to effectively eradicate drug-resistant bacteria. Herein, we have reported a combinational strategy for the eradication of drug-resistant bacteria by using chlorin e6 (Ce6) loaded Prussian blue nanoparticles (PB NPs). This nanocomplex showed strong catalase activity and photodynamic properties. <em>In vitro</em> experiments demonstrated that CPB–Ce6 NPs effectively kill MRSA by generating ROS under laser irradiation. Meanwhile, the nano-enzyme activity of CPB NPs can decompose H<small><sub>2</sub></small>O<small><sub>2</sub></small> in the bacterial microenvironment to upregulate the O<small><sub>2</sub></small> level, which in turn alleviates hypoxia in the microenvironment and improves the antibacterial effect of PDT. <em>In vivo</em> results demonstrated that CPB–Ce6 NPs with laser irradiation effectively cleared MRSA and promoted infected wound repair in a diabetic mouse model and normal mice through upregulating VEGF. Moreover, CPB–Ce6 NPs showed excellent biosafety profiles <em>in vitro</em> and <em>in vivo</em>. From our point of view, this PDT based on PB NPs with nano-enzyme activity may provide an effective treatment for infections associated with drug-resistant microbes and tissue repair.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 18","pages":" 6342-6356"},"PeriodicalIF":5.8000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prussian blue nano-enzyme-assisted photodynamic therapy effectively eradicates MRSA infection in diabetic mouse skin wounds†\",\"authors\":\"Aidi Tong, Chunyi Tong, Jialong Fan, Jingyi Shen, Caiyun Yin, Zhou Wu, Jiansong Zhang and Bin Liu\",\"doi\":\"10.1039/D3BM01039B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Antibiotic therapy can induce the generation of severe bacterial resistance, further challenging the usability of currently available drugs and treatment options. Therefore, it is essential to develop new strategies to effectively eradicate drug-resistant bacteria. Herein, we have reported a combinational strategy for the eradication of drug-resistant bacteria by using chlorin e6 (Ce6) loaded Prussian blue nanoparticles (PB NPs). This nanocomplex showed strong catalase activity and photodynamic properties. <em>In vitro</em> experiments demonstrated that CPB–Ce6 NPs effectively kill MRSA by generating ROS under laser irradiation. Meanwhile, the nano-enzyme activity of CPB NPs can decompose H<small><sub>2</sub></small>O<small><sub>2</sub></small> in the bacterial microenvironment to upregulate the O<small><sub>2</sub></small> level, which in turn alleviates hypoxia in the microenvironment and improves the antibacterial effect of PDT. <em>In vivo</em> results demonstrated that CPB–Ce6 NPs with laser irradiation effectively cleared MRSA and promoted infected wound repair in a diabetic mouse model and normal mice through upregulating VEGF. Moreover, CPB–Ce6 NPs showed excellent biosafety profiles <em>in vitro</em> and <em>in vivo</em>. From our point of view, this PDT based on PB NPs with nano-enzyme activity may provide an effective treatment for infections associated with drug-resistant microbes and tissue repair.</p>\",\"PeriodicalId\":65,\"journal\":{\"name\":\"Biomaterials Science\",\"volume\":\" 18\",\"pages\":\" 6342-6356\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2023-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/bm/d3bm01039b\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/bm/d3bm01039b","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Prussian blue nano-enzyme-assisted photodynamic therapy effectively eradicates MRSA infection in diabetic mouse skin wounds†
Antibiotic therapy can induce the generation of severe bacterial resistance, further challenging the usability of currently available drugs and treatment options. Therefore, it is essential to develop new strategies to effectively eradicate drug-resistant bacteria. Herein, we have reported a combinational strategy for the eradication of drug-resistant bacteria by using chlorin e6 (Ce6) loaded Prussian blue nanoparticles (PB NPs). This nanocomplex showed strong catalase activity and photodynamic properties. In vitro experiments demonstrated that CPB–Ce6 NPs effectively kill MRSA by generating ROS under laser irradiation. Meanwhile, the nano-enzyme activity of CPB NPs can decompose H2O2 in the bacterial microenvironment to upregulate the O2 level, which in turn alleviates hypoxia in the microenvironment and improves the antibacterial effect of PDT. In vivo results demonstrated that CPB–Ce6 NPs with laser irradiation effectively cleared MRSA and promoted infected wound repair in a diabetic mouse model and normal mice through upregulating VEGF. Moreover, CPB–Ce6 NPs showed excellent biosafety profiles in vitro and in vivo. From our point of view, this PDT based on PB NPs with nano-enzyme activity may provide an effective treatment for infections associated with drug-resistant microbes and tissue repair.
期刊介绍:
Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.