近似曲线的递推公式

IF 0.8 4区 数学 Q2 MATHEMATICS
G. Muratore
{"title":"近似曲线的递推公式","authors":"G. Muratore","doi":"10.1307/mmj/20216025","DOIUrl":null,"url":null,"abstract":"Let $X$ be a smooth complex projective variety. Using a construction devised to Gathmann, we present a recursive formula for some of the Gromov-Witten invariants of $X$. We prove that, when $X$ is homogeneous, this formula gives the number of osculating rational curves at a general point of a general hypersurface of $X$. This generalizes the classical well known pairs of inflexion (asymptotic) lines for surfaces in $\\mathbb{P}^{3}$ of Salmon, as well as Darboux's $27$ osculating conics.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2020-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A recursive formula for osculating curves\",\"authors\":\"G. Muratore\",\"doi\":\"10.1307/mmj/20216025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $X$ be a smooth complex projective variety. Using a construction devised to Gathmann, we present a recursive formula for some of the Gromov-Witten invariants of $X$. We prove that, when $X$ is homogeneous, this formula gives the number of osculating rational curves at a general point of a general hypersurface of $X$. This generalizes the classical well known pairs of inflexion (asymptotic) lines for surfaces in $\\\\mathbb{P}^{3}$ of Salmon, as well as Darboux's $27$ osculating conics.\",\"PeriodicalId\":55569,\"journal\":{\"name\":\"Arkiv for Matematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arkiv for Matematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1307/mmj/20216025\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20216025","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

设$X$为光滑复射影变量。利用Gathmann的构造,我们给出了X的一些Gromov-Witten不变量的递归公式。证明了当$X$为齐次时,该公式给出了$X$的一般超曲面的一般点处的密切有理曲线的个数。这推广了Salmon的$\mathbb{P}^{3}$中曲面的经典拐点(渐近)线对,以及Darboux的$27$密切曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A recursive formula for osculating curves
Let $X$ be a smooth complex projective variety. Using a construction devised to Gathmann, we present a recursive formula for some of the Gromov-Witten invariants of $X$. We prove that, when $X$ is homogeneous, this formula gives the number of osculating rational curves at a general point of a general hypersurface of $X$. This generalizes the classical well known pairs of inflexion (asymptotic) lines for surfaces in $\mathbb{P}^{3}$ of Salmon, as well as Darboux's $27$ osculating conics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arkiv for Matematik
Arkiv for Matematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishing research papers, of short to moderate length, in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信