纵、横曲率对壳式人行桥优化设计的影响

IF 2.2 4区 工程技术 Q2 ENGINEERING, CIVIL
Shiming Liu, Bin Huang, Y. Xie
{"title":"纵、横曲率对壳式人行桥优化设计的影响","authors":"Shiming Liu, Bin Huang, Y. Xie","doi":"10.12989/SEM.2021.80.1.027","DOIUrl":null,"url":null,"abstract":"Shell bridges have attracted extensive interest in engineering research and practice. This paper aims to evaluate the effects of longitudinal and transverse curvatures on the optimal design of the shell bridge. For this purpose, a slant-legged steel shell footbridge with the same initial and target volumes of steel was chosen to build parametric geometric models with different curvature radii, and then topology optimization was carried out using the bi-directional evolutionary structural optimization (BESO) technique to obtain optimized designs with high structural stiffness. Furthermore, linear static analysis and eigenvalue analysis demonstrate that the displacement, von Mises effective stress, and the first-order vertical vibration frequency satisfied all the requirements of design regulations. Numerical results indicate that not only the longitudinal curvature but also the transverse curvature have a significant effect on the optimized designs of steel shell footbridge. While the mean compliance increased with the transverse curvature radius, it first decreased and then increased with the longitudinal curvature radius.","PeriodicalId":51181,"journal":{"name":"Structural Engineering and Mechanics","volume":"80 1","pages":"27"},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of longitudinal and transverse curvatures on optimal design of shell footbridge\",\"authors\":\"Shiming Liu, Bin Huang, Y. Xie\",\"doi\":\"10.12989/SEM.2021.80.1.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shell bridges have attracted extensive interest in engineering research and practice. This paper aims to evaluate the effects of longitudinal and transverse curvatures on the optimal design of the shell bridge. For this purpose, a slant-legged steel shell footbridge with the same initial and target volumes of steel was chosen to build parametric geometric models with different curvature radii, and then topology optimization was carried out using the bi-directional evolutionary structural optimization (BESO) technique to obtain optimized designs with high structural stiffness. Furthermore, linear static analysis and eigenvalue analysis demonstrate that the displacement, von Mises effective stress, and the first-order vertical vibration frequency satisfied all the requirements of design regulations. Numerical results indicate that not only the longitudinal curvature but also the transverse curvature have a significant effect on the optimized designs of steel shell footbridge. While the mean compliance increased with the transverse curvature radius, it first decreased and then increased with the longitudinal curvature radius.\",\"PeriodicalId\":51181,\"journal\":{\"name\":\"Structural Engineering and Mechanics\",\"volume\":\"80 1\",\"pages\":\"27\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Engineering and Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/SEM.2021.80.1.027\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Engineering and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SEM.2021.80.1.027","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

壳壳桥梁在工程研究和实践中引起了广泛的兴趣。本文旨在评价纵、横曲率对壳桥优化设计的影响。为此,选取初始钢体积和目标钢体积相同的斜腿钢壳人行桥,建立不同曲率半径的参数化几何模型,利用双向进化结构优化(BESO)技术进行拓扑优化,获得高结构刚度的优化设计。线性静力分析和特征值分析表明,位移、von Mises有效应力和一阶竖向振动频率均满足设计规范的要求。数值计算结果表明,钢壳人行桥的纵向曲率和横向曲率对优化设计都有重要影响。平均柔度随横向曲率半径增大而增大,随纵向曲率半径先减小后增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of longitudinal and transverse curvatures on optimal design of shell footbridge
Shell bridges have attracted extensive interest in engineering research and practice. This paper aims to evaluate the effects of longitudinal and transverse curvatures on the optimal design of the shell bridge. For this purpose, a slant-legged steel shell footbridge with the same initial and target volumes of steel was chosen to build parametric geometric models with different curvature radii, and then topology optimization was carried out using the bi-directional evolutionary structural optimization (BESO) technique to obtain optimized designs with high structural stiffness. Furthermore, linear static analysis and eigenvalue analysis demonstrate that the displacement, von Mises effective stress, and the first-order vertical vibration frequency satisfied all the requirements of design regulations. Numerical results indicate that not only the longitudinal curvature but also the transverse curvature have a significant effect on the optimized designs of steel shell footbridge. While the mean compliance increased with the transverse curvature radius, it first decreased and then increased with the longitudinal curvature radius.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Engineering and Mechanics
Structural Engineering and Mechanics 工程技术-工程:机械
CiteScore
3.80
自引率
18.20%
发文量
0
审稿时长
11 months
期刊介绍: The STRUCTURAL ENGINEERING AND MECHANICS, An International Journal, aims at: providing a major publication channel for structural engineering, wider distribution at more affordable subscription rates; faster reviewing and publication for manuscripts submitted; and a broad scope for wider participation. The main subject of the Journal is structural engineering concerned with aspects of mechanics. Areas covered by the Journal include: - Structural Mechanics - Design of Civil, Building and Mechanical Structures - Structural Optimization and Controls - Structural Safety and Reliability - New Structural Materials and Applications - Effects of Wind, Earthquake and Wave Loadings on Structures - Fluid-Structure and Soil-Structure Interactions - AI Application and Expert Systems in Structural Engineering. Submission of papers from practicing engineers is particularly encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信