{"title":"预测钢筋混凝土梁非线性扭转性能的格点模型的建立","authors":"Yeongseok Jeong, M. Kwon, Jinsup Kim","doi":"10.12989/SEM.2021.79.6.779","DOIUrl":null,"url":null,"abstract":"Seismic design criteria based on performance of structures have recently been adopted by practicing engineers in response to destructive earthquakes. A simple but efficient structural-analysis tool capable of predicting both strength and ductility is needed to analyze reinforced concrete (RC) structures subjected to such events. Hence, a three-dimensional lattice model is developed in this study to analyze torsions in high-strength RC beams. Optimization techniques for determining optimal variables in each lattice model are introduced. Pure torsion tests of RC beams were performed to use to propose a threedimensional lattice model. The experimental test results of pure torsion on RC beam specimens were used to compare with numerical results obtained using the proposed model. Then, the proposed model was also compared to 3D solid model in commercial finite element analysis program, ABAQUS. Correlation studies between the numerical and experimental results confirm that the proposed model is well capable of representing salient features of the experimental results. Furthermore, the proposed model provides better predicted displacement corresponding to peak load. than the result from ABAQUS.","PeriodicalId":51181,"journal":{"name":"Structural Engineering and Mechanics","volume":"79 1","pages":"779"},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a lattice model for predicting nonlinear torsional behavior of RC beams\",\"authors\":\"Yeongseok Jeong, M. Kwon, Jinsup Kim\",\"doi\":\"10.12989/SEM.2021.79.6.779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Seismic design criteria based on performance of structures have recently been adopted by practicing engineers in response to destructive earthquakes. A simple but efficient structural-analysis tool capable of predicting both strength and ductility is needed to analyze reinforced concrete (RC) structures subjected to such events. Hence, a three-dimensional lattice model is developed in this study to analyze torsions in high-strength RC beams. Optimization techniques for determining optimal variables in each lattice model are introduced. Pure torsion tests of RC beams were performed to use to propose a threedimensional lattice model. The experimental test results of pure torsion on RC beam specimens were used to compare with numerical results obtained using the proposed model. Then, the proposed model was also compared to 3D solid model in commercial finite element analysis program, ABAQUS. Correlation studies between the numerical and experimental results confirm that the proposed model is well capable of representing salient features of the experimental results. Furthermore, the proposed model provides better predicted displacement corresponding to peak load. than the result from ABAQUS.\",\"PeriodicalId\":51181,\"journal\":{\"name\":\"Structural Engineering and Mechanics\",\"volume\":\"79 1\",\"pages\":\"779\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Engineering and Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/SEM.2021.79.6.779\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Engineering and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SEM.2021.79.6.779","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Development of a lattice model for predicting nonlinear torsional behavior of RC beams
Seismic design criteria based on performance of structures have recently been adopted by practicing engineers in response to destructive earthquakes. A simple but efficient structural-analysis tool capable of predicting both strength and ductility is needed to analyze reinforced concrete (RC) structures subjected to such events. Hence, a three-dimensional lattice model is developed in this study to analyze torsions in high-strength RC beams. Optimization techniques for determining optimal variables in each lattice model are introduced. Pure torsion tests of RC beams were performed to use to propose a threedimensional lattice model. The experimental test results of pure torsion on RC beam specimens were used to compare with numerical results obtained using the proposed model. Then, the proposed model was also compared to 3D solid model in commercial finite element analysis program, ABAQUS. Correlation studies between the numerical and experimental results confirm that the proposed model is well capable of representing salient features of the experimental results. Furthermore, the proposed model provides better predicted displacement corresponding to peak load. than the result from ABAQUS.
期刊介绍:
The STRUCTURAL ENGINEERING AND MECHANICS, An International Journal, aims at: providing a major publication channel for structural engineering, wider distribution at more affordable subscription rates; faster reviewing and publication for manuscripts submitted; and a broad scope for wider participation.
The main subject of the Journal is structural engineering concerned with aspects of mechanics. Areas covered by the Journal include:
- Structural Mechanics
- Design of Civil, Building and Mechanical Structures
- Structural Optimization and Controls
- Structural Safety and Reliability
- New Structural Materials and Applications
- Effects of Wind, Earthquake and Wave Loadings on Structures
- Fluid-Structure and Soil-Structure Interactions
- AI Application and Expert Systems in Structural Engineering. Submission of papers from practicing engineers is particularly encouraged.