不完全粘弹性复合材料层合板的非线性动力屈曲分析

IF 2.2 4区 工程技术 Q2 ENGINEERING, CIVIL
Mehran Agha Mohammad Pour, H. Ovesy
{"title":"不完全粘弹性复合材料层合板的非线性动力屈曲分析","authors":"Mehran Agha Mohammad Pour, H. Ovesy","doi":"10.12989/SEM.2021.79.5.653","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to study the effects of linear viscoelastic behavior on dynamic buckling response of imperfect composite laminated plates subjected to in-plane dynamic loads by implementing semi-analytical finite strip method (FSM). The semi-analytical FSM converges with a comparatively small number of strips and correspondingly small number of degrees of freedom. Thus, it is usually implemented more easily and faster than many other computational methods. The governing equations are derived by using classical laminated plate theory (CLPT) and the behavior of plate is assumed to be geometrically nonlinear through Von-Karman assumptions. The Newmark's implicit time integration method in conjunction with the Newton-Raphson iteration are employed to solve the nonlinear governing equation. A Kelvin-Voigt viscoelastic model is considered, and the effects of viscosity coefficient, thickness of the layers of the composite plate and boundary conditions on the nonlinear dynamic buckling response are discussed. In order to justify the accuracy of the results, some of them are verified against those available in other sources. It is also shown that the nonlinear dynamic buckling response of an imperfect viscoelastic composite laminated plate is significantly different from the elastic one by considering different viscosity coefficients.","PeriodicalId":51181,"journal":{"name":"Structural Engineering and Mechanics","volume":"79 1","pages":"653"},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear dynamic buckling analysis of imperfect viscoelastic composite laminated plates\",\"authors\":\"Mehran Agha Mohammad Pour, H. Ovesy\",\"doi\":\"10.12989/SEM.2021.79.5.653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to study the effects of linear viscoelastic behavior on dynamic buckling response of imperfect composite laminated plates subjected to in-plane dynamic loads by implementing semi-analytical finite strip method (FSM). The semi-analytical FSM converges with a comparatively small number of strips and correspondingly small number of degrees of freedom. Thus, it is usually implemented more easily and faster than many other computational methods. The governing equations are derived by using classical laminated plate theory (CLPT) and the behavior of plate is assumed to be geometrically nonlinear through Von-Karman assumptions. The Newmark's implicit time integration method in conjunction with the Newton-Raphson iteration are employed to solve the nonlinear governing equation. A Kelvin-Voigt viscoelastic model is considered, and the effects of viscosity coefficient, thickness of the layers of the composite plate and boundary conditions on the nonlinear dynamic buckling response are discussed. In order to justify the accuracy of the results, some of them are verified against those available in other sources. It is also shown that the nonlinear dynamic buckling response of an imperfect viscoelastic composite laminated plate is significantly different from the elastic one by considering different viscosity coefficients.\",\"PeriodicalId\":51181,\"journal\":{\"name\":\"Structural Engineering and Mechanics\",\"volume\":\"79 1\",\"pages\":\"653\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Engineering and Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/SEM.2021.79.5.653\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Engineering and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SEM.2021.79.5.653","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

采用半解析有限条法研究了线粘弹性特性对面内动力载荷作用下不完全复合材料层合板动态屈曲响应的影响。半解析式FSM收敛的条带数目相对较少,相应的自由度也较少。因此,它通常比许多其他计算方法更容易和更快地实现。利用经典叠合板理论推导了控制方程,并通过冯-卡门假设假定板的行为是几何非线性的。采用Newmark隐式时间积分法结合Newton-Raphson迭代法求解非线性控制方程。考虑了一种Kelvin-Voigt粘弹性模型,讨论了粘滞系数、层厚和边界条件对复合材料板非线性动态屈曲响应的影响。为了证明结果的准确性,将其中一些结果与其他来源提供的结果进行核对。考虑不同粘弹性系数时,不完全粘弹性复合材料层合板的非线性动力屈曲响应与弹性层合板的非线性动力屈曲响应有显著差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear dynamic buckling analysis of imperfect viscoelastic composite laminated plates
The aim of this paper is to study the effects of linear viscoelastic behavior on dynamic buckling response of imperfect composite laminated plates subjected to in-plane dynamic loads by implementing semi-analytical finite strip method (FSM). The semi-analytical FSM converges with a comparatively small number of strips and correspondingly small number of degrees of freedom. Thus, it is usually implemented more easily and faster than many other computational methods. The governing equations are derived by using classical laminated plate theory (CLPT) and the behavior of plate is assumed to be geometrically nonlinear through Von-Karman assumptions. The Newmark's implicit time integration method in conjunction with the Newton-Raphson iteration are employed to solve the nonlinear governing equation. A Kelvin-Voigt viscoelastic model is considered, and the effects of viscosity coefficient, thickness of the layers of the composite plate and boundary conditions on the nonlinear dynamic buckling response are discussed. In order to justify the accuracy of the results, some of them are verified against those available in other sources. It is also shown that the nonlinear dynamic buckling response of an imperfect viscoelastic composite laminated plate is significantly different from the elastic one by considering different viscosity coefficients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Engineering and Mechanics
Structural Engineering and Mechanics 工程技术-工程:机械
CiteScore
3.80
自引率
18.20%
发文量
0
审稿时长
11 months
期刊介绍: The STRUCTURAL ENGINEERING AND MECHANICS, An International Journal, aims at: providing a major publication channel for structural engineering, wider distribution at more affordable subscription rates; faster reviewing and publication for manuscripts submitted; and a broad scope for wider participation. The main subject of the Journal is structural engineering concerned with aspects of mechanics. Areas covered by the Journal include: - Structural Mechanics - Design of Civil, Building and Mechanical Structures - Structural Optimization and Controls - Structural Safety and Reliability - New Structural Materials and Applications - Effects of Wind, Earthquake and Wave Loadings on Structures - Fluid-Structure and Soil-Structure Interactions - AI Application and Expert Systems in Structural Engineering. Submission of papers from practicing engineers is particularly encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信