Xinli Xu, Chunwei Zhang, F. Musharavati, T. Sebaey, Afrasyab Khan
{"title":"热环境下多孔功能梯度弯曲梁的波传播分析","authors":"Xinli Xu, Chunwei Zhang, F. Musharavati, T. Sebaey, Afrasyab Khan","doi":"10.12989/SEM.2021.79.6.665","DOIUrl":null,"url":null,"abstract":"In the present paper, wave propagation behavior of porous temperature-dependent functionally graded curved beams within the thermal environment is analyzed for the first time. A recently-developed method is utilized which considers the reciprocal effect of mass density and Young's modulus in order to explore the influence of porosity. Three different types of temperature variation (uniform temperature change (UTC), linear temperature change (LTC), sinusoidal temperature change (STC)) are employed to study the effect of various thermal loads. Euler-Bernoulli beam theory, also known as classic beam theory is implemented in order to derive kinetic and kinematic relations, and then Hamilton's principle is used to obtain governing equations of porous functionally graded curved beams. The obtained governing equations are analytically solved. Eventually, the influences of various parameters such as wave number, porosity coefficient, various types of temperature change and power index are covered and indicated in a set of illustrations.","PeriodicalId":51181,"journal":{"name":"Structural Engineering and Mechanics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Wave propagation analysis of porous functionally graded curved beams in the thermal environment\",\"authors\":\"Xinli Xu, Chunwei Zhang, F. Musharavati, T. Sebaey, Afrasyab Khan\",\"doi\":\"10.12989/SEM.2021.79.6.665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, wave propagation behavior of porous temperature-dependent functionally graded curved beams within the thermal environment is analyzed for the first time. A recently-developed method is utilized which considers the reciprocal effect of mass density and Young's modulus in order to explore the influence of porosity. Three different types of temperature variation (uniform temperature change (UTC), linear temperature change (LTC), sinusoidal temperature change (STC)) are employed to study the effect of various thermal loads. Euler-Bernoulli beam theory, also known as classic beam theory is implemented in order to derive kinetic and kinematic relations, and then Hamilton's principle is used to obtain governing equations of porous functionally graded curved beams. The obtained governing equations are analytically solved. Eventually, the influences of various parameters such as wave number, porosity coefficient, various types of temperature change and power index are covered and indicated in a set of illustrations.\",\"PeriodicalId\":51181,\"journal\":{\"name\":\"Structural Engineering and Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Engineering and Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/SEM.2021.79.6.665\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Engineering and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SEM.2021.79.6.665","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Wave propagation analysis of porous functionally graded curved beams in the thermal environment
In the present paper, wave propagation behavior of porous temperature-dependent functionally graded curved beams within the thermal environment is analyzed for the first time. A recently-developed method is utilized which considers the reciprocal effect of mass density and Young's modulus in order to explore the influence of porosity. Three different types of temperature variation (uniform temperature change (UTC), linear temperature change (LTC), sinusoidal temperature change (STC)) are employed to study the effect of various thermal loads. Euler-Bernoulli beam theory, also known as classic beam theory is implemented in order to derive kinetic and kinematic relations, and then Hamilton's principle is used to obtain governing equations of porous functionally graded curved beams. The obtained governing equations are analytically solved. Eventually, the influences of various parameters such as wave number, porosity coefficient, various types of temperature change and power index are covered and indicated in a set of illustrations.
期刊介绍:
The STRUCTURAL ENGINEERING AND MECHANICS, An International Journal, aims at: providing a major publication channel for structural engineering, wider distribution at more affordable subscription rates; faster reviewing and publication for manuscripts submitted; and a broad scope for wider participation.
The main subject of the Journal is structural engineering concerned with aspects of mechanics. Areas covered by the Journal include:
- Structural Mechanics
- Design of Civil, Building and Mechanical Structures
- Structural Optimization and Controls
- Structural Safety and Reliability
- New Structural Materials and Applications
- Effects of Wind, Earthquake and Wave Loadings on Structures
- Fluid-Structure and Soil-Structure Interactions
- AI Application and Expert Systems in Structural Engineering. Submission of papers from practicing engineers is particularly encouraged.