{"title":"准零刚度紧凑型隔振器的设计与试验研究","authors":"A. Valeev, R. Tashbulatov, B. Mastobaev","doi":"10.12989/SEM.2021.79.4.415","DOIUrl":null,"url":null,"abstract":"This study aimed to develop a compact high-efficiency vibration isolator. It was proposed to use force characteristic with quasi-zero stiffness. To avoid a number of design problems, the isolator was designed in a dome shape. This study features a mathematical model of the vibration isolator with quasi-zero stiffness. It allows calculating the isolator properties by geometrical parameters. Stability analysis giving advanced formulas for achieving the maximum workload at certain dimensions was made. For an experimental study, the prototypes were made of shock-absorbing rubbers IRP1346, IRP1347, IRP1348, and fluoroelastomer SKF-32. Force characteristic in static condition was studied, which showed the high efficiency of the compact vibration isolator with quasi-zero stiffness: natural frequency equals 0.8-1.2 Hz. An experimental study in dynamic condition was done using load cell sensors to measure dynamic force transmitted with and without the vibration isolator. The experiment shows a vibration isolation coefficient equal to 244, corresponding to the natural vibration frequency of 2.17 Hz. The study shows the vibration isolator with quasi-zero stiffness as highly efficient, compact, and very perspective for industrial application.","PeriodicalId":51181,"journal":{"name":"Structural Engineering and Mechanics","volume":"79 1","pages":"415"},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Designing and experimental study of compact vibration isolator with quasi-zero stiffness\",\"authors\":\"A. Valeev, R. Tashbulatov, B. Mastobaev\",\"doi\":\"10.12989/SEM.2021.79.4.415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aimed to develop a compact high-efficiency vibration isolator. It was proposed to use force characteristic with quasi-zero stiffness. To avoid a number of design problems, the isolator was designed in a dome shape. This study features a mathematical model of the vibration isolator with quasi-zero stiffness. It allows calculating the isolator properties by geometrical parameters. Stability analysis giving advanced formulas for achieving the maximum workload at certain dimensions was made. For an experimental study, the prototypes were made of shock-absorbing rubbers IRP1346, IRP1347, IRP1348, and fluoroelastomer SKF-32. Force characteristic in static condition was studied, which showed the high efficiency of the compact vibration isolator with quasi-zero stiffness: natural frequency equals 0.8-1.2 Hz. An experimental study in dynamic condition was done using load cell sensors to measure dynamic force transmitted with and without the vibration isolator. The experiment shows a vibration isolation coefficient equal to 244, corresponding to the natural vibration frequency of 2.17 Hz. The study shows the vibration isolator with quasi-zero stiffness as highly efficient, compact, and very perspective for industrial application.\",\"PeriodicalId\":51181,\"journal\":{\"name\":\"Structural Engineering and Mechanics\",\"volume\":\"79 1\",\"pages\":\"415\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Engineering and Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/SEM.2021.79.4.415\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Engineering and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SEM.2021.79.4.415","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Designing and experimental study of compact vibration isolator with quasi-zero stiffness
This study aimed to develop a compact high-efficiency vibration isolator. It was proposed to use force characteristic with quasi-zero stiffness. To avoid a number of design problems, the isolator was designed in a dome shape. This study features a mathematical model of the vibration isolator with quasi-zero stiffness. It allows calculating the isolator properties by geometrical parameters. Stability analysis giving advanced formulas for achieving the maximum workload at certain dimensions was made. For an experimental study, the prototypes were made of shock-absorbing rubbers IRP1346, IRP1347, IRP1348, and fluoroelastomer SKF-32. Force characteristic in static condition was studied, which showed the high efficiency of the compact vibration isolator with quasi-zero stiffness: natural frequency equals 0.8-1.2 Hz. An experimental study in dynamic condition was done using load cell sensors to measure dynamic force transmitted with and without the vibration isolator. The experiment shows a vibration isolation coefficient equal to 244, corresponding to the natural vibration frequency of 2.17 Hz. The study shows the vibration isolator with quasi-zero stiffness as highly efficient, compact, and very perspective for industrial application.
期刊介绍:
The STRUCTURAL ENGINEERING AND MECHANICS, An International Journal, aims at: providing a major publication channel for structural engineering, wider distribution at more affordable subscription rates; faster reviewing and publication for manuscripts submitted; and a broad scope for wider participation.
The main subject of the Journal is structural engineering concerned with aspects of mechanics. Areas covered by the Journal include:
- Structural Mechanics
- Design of Civil, Building and Mechanical Structures
- Structural Optimization and Controls
- Structural Safety and Reliability
- New Structural Materials and Applications
- Effects of Wind, Earthquake and Wave Loadings on Structures
- Fluid-Structure and Soil-Structure Interactions
- AI Application and Expert Systems in Structural Engineering. Submission of papers from practicing engineers is particularly encouraged.