准零刚度紧凑型隔振器的设计与试验研究

IF 2.2 4区 工程技术 Q2 ENGINEERING, CIVIL
A. Valeev, R. Tashbulatov, B. Mastobaev
{"title":"准零刚度紧凑型隔振器的设计与试验研究","authors":"A. Valeev, R. Tashbulatov, B. Mastobaev","doi":"10.12989/SEM.2021.79.4.415","DOIUrl":null,"url":null,"abstract":"This study aimed to develop a compact high-efficiency vibration isolator. It was proposed to use force characteristic with quasi-zero stiffness. To avoid a number of design problems, the isolator was designed in a dome shape. This study features a mathematical model of the vibration isolator with quasi-zero stiffness. It allows calculating the isolator properties by geometrical parameters. Stability analysis giving advanced formulas for achieving the maximum workload at certain dimensions was made. For an experimental study, the prototypes were made of shock-absorbing rubbers IRP1346, IRP1347, IRP1348, and fluoroelastomer SKF-32. Force characteristic in static condition was studied, which showed the high efficiency of the compact vibration isolator with quasi-zero stiffness: natural frequency equals 0.8-1.2 Hz. An experimental study in dynamic condition was done using load cell sensors to measure dynamic force transmitted with and without the vibration isolator. The experiment shows a vibration isolation coefficient equal to 244, corresponding to the natural vibration frequency of 2.17 Hz. The study shows the vibration isolator with quasi-zero stiffness as highly efficient, compact, and very perspective for industrial application.","PeriodicalId":51181,"journal":{"name":"Structural Engineering and Mechanics","volume":"79 1","pages":"415"},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Designing and experimental study of compact vibration isolator with quasi-zero stiffness\",\"authors\":\"A. Valeev, R. Tashbulatov, B. Mastobaev\",\"doi\":\"10.12989/SEM.2021.79.4.415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aimed to develop a compact high-efficiency vibration isolator. It was proposed to use force characteristic with quasi-zero stiffness. To avoid a number of design problems, the isolator was designed in a dome shape. This study features a mathematical model of the vibration isolator with quasi-zero stiffness. It allows calculating the isolator properties by geometrical parameters. Stability analysis giving advanced formulas for achieving the maximum workload at certain dimensions was made. For an experimental study, the prototypes were made of shock-absorbing rubbers IRP1346, IRP1347, IRP1348, and fluoroelastomer SKF-32. Force characteristic in static condition was studied, which showed the high efficiency of the compact vibration isolator with quasi-zero stiffness: natural frequency equals 0.8-1.2 Hz. An experimental study in dynamic condition was done using load cell sensors to measure dynamic force transmitted with and without the vibration isolator. The experiment shows a vibration isolation coefficient equal to 244, corresponding to the natural vibration frequency of 2.17 Hz. The study shows the vibration isolator with quasi-zero stiffness as highly efficient, compact, and very perspective for industrial application.\",\"PeriodicalId\":51181,\"journal\":{\"name\":\"Structural Engineering and Mechanics\",\"volume\":\"79 1\",\"pages\":\"415\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Engineering and Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/SEM.2021.79.4.415\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Engineering and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SEM.2021.79.4.415","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1

摘要

本课题旨在研制一种紧凑型高效隔振器。提出了采用准零刚度的力特性。为了避免一些设计问题,隔离器被设计成一个圆顶形状。本文建立了准零刚度隔振器的数学模型。它允许通过几何参数计算隔离器的特性。通过稳定性分析,给出了在一定尺寸下实现最大工作量的先进公式。在实验研究中,原型由减震橡胶IRP1346、IRP1347、IRP1348和氟弹性体SKF-32制成。对静力状态下的力特性进行了研究,结果表明,准零刚度紧凑型隔振器效率高,固有频率为0.8 ~ 1.2 Hz。在动态条件下,利用称重传感器测量了带隔振器和不带隔振器时传递的动态力。实验结果表明,隔振系数为244,对应的固有振动频率为2.17 Hz。研究表明,准零刚度隔振器结构紧凑、高效,具有较好的工业应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing and experimental study of compact vibration isolator with quasi-zero stiffness
This study aimed to develop a compact high-efficiency vibration isolator. It was proposed to use force characteristic with quasi-zero stiffness. To avoid a number of design problems, the isolator was designed in a dome shape. This study features a mathematical model of the vibration isolator with quasi-zero stiffness. It allows calculating the isolator properties by geometrical parameters. Stability analysis giving advanced formulas for achieving the maximum workload at certain dimensions was made. For an experimental study, the prototypes were made of shock-absorbing rubbers IRP1346, IRP1347, IRP1348, and fluoroelastomer SKF-32. Force characteristic in static condition was studied, which showed the high efficiency of the compact vibration isolator with quasi-zero stiffness: natural frequency equals 0.8-1.2 Hz. An experimental study in dynamic condition was done using load cell sensors to measure dynamic force transmitted with and without the vibration isolator. The experiment shows a vibration isolation coefficient equal to 244, corresponding to the natural vibration frequency of 2.17 Hz. The study shows the vibration isolator with quasi-zero stiffness as highly efficient, compact, and very perspective for industrial application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Engineering and Mechanics
Structural Engineering and Mechanics 工程技术-工程:机械
CiteScore
3.80
自引率
18.20%
发文量
0
审稿时长
11 months
期刊介绍: The STRUCTURAL ENGINEERING AND MECHANICS, An International Journal, aims at: providing a major publication channel for structural engineering, wider distribution at more affordable subscription rates; faster reviewing and publication for manuscripts submitted; and a broad scope for wider participation. The main subject of the Journal is structural engineering concerned with aspects of mechanics. Areas covered by the Journal include: - Structural Mechanics - Design of Civil, Building and Mechanical Structures - Structural Optimization and Controls - Structural Safety and Reliability - New Structural Materials and Applications - Effects of Wind, Earthquake and Wave Loadings on Structures - Fluid-Structure and Soil-Structure Interactions - AI Application and Expert Systems in Structural Engineering. Submission of papers from practicing engineers is particularly encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信