{"title":"五种理论下粘度和旋转对广义双温热弹性的影响","authors":"Aamnah M. Alharbi, M. Othman, H. M. Atef","doi":"10.12989/SEM.2021.78.6.755","DOIUrl":null,"url":null,"abstract":"In the current paper, an equational model for generalized thermo-visco-elasticity is set up for such an elastic medium that indicates isotropicity along with two temperatures. The angular velocity for rotating this medium is maintained uniformly. Several generalized thermoelasticity theories have been employed to fulfill the detailing purposes which include; Lord-Shulman (L-S) and Green-Lindsay (G-L) theories with one and two relaxation times respectively, coupled theory, Tzou theory consisting of dual-phase lags (DPL), and lastly Green-Naghdi (G-N II) theory in the absence of energy dissipation. The application of Normal mode examination leads to the attainment of specific articulations for the thought about factors. Some specific cases are additionally talked about with regards to the complexity. Also, Numerical as well as the graphical representation of the factors under consideration has been presented. Examinations are carried out by keeping outcome predictions in mind as anticipated by various theories (L-S, G-N II, G-L, and DPL), rotation, viscosity, and two temperatures.","PeriodicalId":51181,"journal":{"name":"Structural Engineering and Mechanics","volume":"78 1","pages":"755"},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of viscosity and rotation on a generalized two-temperature thermoelasticity under five theories\",\"authors\":\"Aamnah M. Alharbi, M. Othman, H. M. Atef\",\"doi\":\"10.12989/SEM.2021.78.6.755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the current paper, an equational model for generalized thermo-visco-elasticity is set up for such an elastic medium that indicates isotropicity along with two temperatures. The angular velocity for rotating this medium is maintained uniformly. Several generalized thermoelasticity theories have been employed to fulfill the detailing purposes which include; Lord-Shulman (L-S) and Green-Lindsay (G-L) theories with one and two relaxation times respectively, coupled theory, Tzou theory consisting of dual-phase lags (DPL), and lastly Green-Naghdi (G-N II) theory in the absence of energy dissipation. The application of Normal mode examination leads to the attainment of specific articulations for the thought about factors. Some specific cases are additionally talked about with regards to the complexity. Also, Numerical as well as the graphical representation of the factors under consideration has been presented. Examinations are carried out by keeping outcome predictions in mind as anticipated by various theories (L-S, G-N II, G-L, and DPL), rotation, viscosity, and two temperatures.\",\"PeriodicalId\":51181,\"journal\":{\"name\":\"Structural Engineering and Mechanics\",\"volume\":\"78 1\",\"pages\":\"755\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Engineering and Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/SEM.2021.78.6.755\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Engineering and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SEM.2021.78.6.755","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Effect of viscosity and rotation on a generalized two-temperature thermoelasticity under five theories
In the current paper, an equational model for generalized thermo-visco-elasticity is set up for such an elastic medium that indicates isotropicity along with two temperatures. The angular velocity for rotating this medium is maintained uniformly. Several generalized thermoelasticity theories have been employed to fulfill the detailing purposes which include; Lord-Shulman (L-S) and Green-Lindsay (G-L) theories with one and two relaxation times respectively, coupled theory, Tzou theory consisting of dual-phase lags (DPL), and lastly Green-Naghdi (G-N II) theory in the absence of energy dissipation. The application of Normal mode examination leads to the attainment of specific articulations for the thought about factors. Some specific cases are additionally talked about with regards to the complexity. Also, Numerical as well as the graphical representation of the factors under consideration has been presented. Examinations are carried out by keeping outcome predictions in mind as anticipated by various theories (L-S, G-N II, G-L, and DPL), rotation, viscosity, and two temperatures.
期刊介绍:
The STRUCTURAL ENGINEERING AND MECHANICS, An International Journal, aims at: providing a major publication channel for structural engineering, wider distribution at more affordable subscription rates; faster reviewing and publication for manuscripts submitted; and a broad scope for wider participation.
The main subject of the Journal is structural engineering concerned with aspects of mechanics. Areas covered by the Journal include:
- Structural Mechanics
- Design of Civil, Building and Mechanical Structures
- Structural Optimization and Controls
- Structural Safety and Reliability
- New Structural Materials and Applications
- Effects of Wind, Earthquake and Wave Loadings on Structures
- Fluid-Structure and Soil-Structure Interactions
- AI Application and Expert Systems in Structural Engineering. Submission of papers from practicing engineers is particularly encouraged.