基于能量和位移损伤指标的ASCE基准问题损伤检测

IF 2.2 4区 工程技术 Q2 ENGINEERING, CIVIL
M. J. Khosraviani, O. Bahar, S. Ghasemi
{"title":"基于能量和位移损伤指标的ASCE基准问题损伤检测","authors":"M. J. Khosraviani, O. Bahar, S. Ghasemi","doi":"10.12989/SEM.2021.77.2.151","DOIUrl":null,"url":null,"abstract":"This paper aims to present a novelty damage detection method to identify damage locations by the simultaneous use of both the energy and displacement damage indices. Using this novelty method, the damaged location and even the damaged floor are accurately detected. As a first method, a combination of the instantaneous frequency energy index (EDI) and the structural acceleration responses are used. To evaluate the first method and also present a rapid assessment method, the Displacement Damage Index (DDI), which consists of the error reliability (β) and Normal Probability Density Function (NPDF) indices, are introduced. The innovation of this method is the simultaneous use of displacement-acceleration responses during one process, which is more effective in the rapid evaluation of damage patterns with velocity vectors. In order to evaluate the effectiveness of the proposed method, various damage scenarios of the ASCE benchmark problem, and the effects of measurement noise were studied numerically. Extensive analyses show that the rapid proposed method is capable of accurately detecting the location of sparse damages through the building. Finally, the proposed method was validated by experimental studies of a six‐story steel building structure with single and multiple damage cases.","PeriodicalId":51181,"journal":{"name":"Structural Engineering and Mechanics","volume":"77 1","pages":"151-165"},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Damage detection using both energy and displacement damage index on the ASCE benchmark problem\",\"authors\":\"M. J. Khosraviani, O. Bahar, S. Ghasemi\",\"doi\":\"10.12989/SEM.2021.77.2.151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to present a novelty damage detection method to identify damage locations by the simultaneous use of both the energy and displacement damage indices. Using this novelty method, the damaged location and even the damaged floor are accurately detected. As a first method, a combination of the instantaneous frequency energy index (EDI) and the structural acceleration responses are used. To evaluate the first method and also present a rapid assessment method, the Displacement Damage Index (DDI), which consists of the error reliability (β) and Normal Probability Density Function (NPDF) indices, are introduced. The innovation of this method is the simultaneous use of displacement-acceleration responses during one process, which is more effective in the rapid evaluation of damage patterns with velocity vectors. In order to evaluate the effectiveness of the proposed method, various damage scenarios of the ASCE benchmark problem, and the effects of measurement noise were studied numerically. Extensive analyses show that the rapid proposed method is capable of accurately detecting the location of sparse damages through the building. Finally, the proposed method was validated by experimental studies of a six‐story steel building structure with single and multiple damage cases.\",\"PeriodicalId\":51181,\"journal\":{\"name\":\"Structural Engineering and Mechanics\",\"volume\":\"77 1\",\"pages\":\"151-165\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Engineering and Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/SEM.2021.77.2.151\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Engineering and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SEM.2021.77.2.151","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种同时利用能量损伤指标和位移损伤指标识别损伤位置的新型损伤检测方法。利用这种新颖的方法,可以准确地检测出损坏的位置,甚至是损坏的地板。作为第一种方法,将瞬时频率能量指数(EDI)与结构加速度响应相结合。为了对第一种方法进行评价并提出一种快速评估方法,引入了由误差可靠度(β)和正态概率密度函数(NPDF)指标组成的位移损伤指数(DDI)。该方法的创新之处在于在一个过程中同时使用位移-加速度响应,可以更有效地利用速度矢量快速评估损伤模式。为了评价该方法的有效性,对ASCE基准问题的各种损伤场景以及测量噪声的影响进行了数值研究。广泛的分析表明,该方法能够准确地检测出建筑物中稀疏损伤的位置。最后,对某六层钢结构进行了单损伤和多损伤的试验研究,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Damage detection using both energy and displacement damage index on the ASCE benchmark problem
This paper aims to present a novelty damage detection method to identify damage locations by the simultaneous use of both the energy and displacement damage indices. Using this novelty method, the damaged location and even the damaged floor are accurately detected. As a first method, a combination of the instantaneous frequency energy index (EDI) and the structural acceleration responses are used. To evaluate the first method and also present a rapid assessment method, the Displacement Damage Index (DDI), which consists of the error reliability (β) and Normal Probability Density Function (NPDF) indices, are introduced. The innovation of this method is the simultaneous use of displacement-acceleration responses during one process, which is more effective in the rapid evaluation of damage patterns with velocity vectors. In order to evaluate the effectiveness of the proposed method, various damage scenarios of the ASCE benchmark problem, and the effects of measurement noise were studied numerically. Extensive analyses show that the rapid proposed method is capable of accurately detecting the location of sparse damages through the building. Finally, the proposed method was validated by experimental studies of a six‐story steel building structure with single and multiple damage cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Engineering and Mechanics
Structural Engineering and Mechanics 工程技术-工程:机械
CiteScore
3.80
自引率
18.20%
发文量
0
审稿时长
11 months
期刊介绍: The STRUCTURAL ENGINEERING AND MECHANICS, An International Journal, aims at: providing a major publication channel for structural engineering, wider distribution at more affordable subscription rates; faster reviewing and publication for manuscripts submitted; and a broad scope for wider participation. The main subject of the Journal is structural engineering concerned with aspects of mechanics. Areas covered by the Journal include: - Structural Mechanics - Design of Civil, Building and Mechanical Structures - Structural Optimization and Controls - Structural Safety and Reliability - New Structural Materials and Applications - Effects of Wind, Earthquake and Wave Loadings on Structures - Fluid-Structure and Soil-Structure Interactions - AI Application and Expert Systems in Structural Engineering. Submission of papers from practicing engineers is particularly encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信