球的直接积的内在特征

Q2 Mathematics
A. Kodama, S. Shimizu
{"title":"球的直接积的内在特征","authors":"A. Kodama, S. Shimizu","doi":"10.1215/KJM/1260975042","DOIUrl":null,"url":null,"abstract":"In this paper, we give a characterization of the direct product of balls by its holomorphic automorphism group. Using a result on the standardization of certain compact group actions on complex manifolds, we show that, for a connected Stein manifold M of dimension n , if its holomorphic automorphism group contains a topological subgroup that is isomorphic to the holomorphic automorphism group of the direct product B of balls in C n , then M itself is biholomorphically equivalent to B .","PeriodicalId":50142,"journal":{"name":"Journal of Mathematics of Kyoto University","volume":"49 1","pages":"619-630"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1215/KJM/1260975042","citationCount":"5","resultStr":"{\"title\":\"An intrinsic characterization of the direct product of balls\",\"authors\":\"A. Kodama, S. Shimizu\",\"doi\":\"10.1215/KJM/1260975042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we give a characterization of the direct product of balls by its holomorphic automorphism group. Using a result on the standardization of certain compact group actions on complex manifolds, we show that, for a connected Stein manifold M of dimension n , if its holomorphic automorphism group contains a topological subgroup that is isomorphic to the holomorphic automorphism group of the direct product B of balls in C n , then M itself is biholomorphically equivalent to B .\",\"PeriodicalId\":50142,\"journal\":{\"name\":\"Journal of Mathematics of Kyoto University\",\"volume\":\"49 1\",\"pages\":\"619-630\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1215/KJM/1260975042\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics of Kyoto University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/KJM/1260975042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics of Kyoto University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/KJM/1260975042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

摘要

本文给出了球的全纯自同构群的直积的一个刻划。利用复流形上某些紧群作用的标准化结果,证明了对于n维的连通Stein流形M,如果它的全纯自同构群包含一个拓扑子群,该拓扑子群与C n中球的直积B的全纯自同构群同构,则M本身是生物全纯等价于B的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An intrinsic characterization of the direct product of balls
In this paper, we give a characterization of the direct product of balls by its holomorphic automorphism group. Using a result on the standardization of certain compact group actions on complex manifolds, we show that, for a connected Stein manifold M of dimension n , if its holomorphic automorphism group contains a topological subgroup that is isomorphic to the holomorphic automorphism group of the direct product B of balls in C n , then M itself is biholomorphically equivalent to B .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Papers on pure and applied mathematics intended for publication in the Kyoto Journal of Mathematics should be written in English, French, or German. Submission of a paper acknowledges that the paper is original and is not submitted elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信