布朗运动被限制在一个锥体上

Q2 Mathematics
Rodolphe Garbit
{"title":"布朗运动被限制在一个锥体上","authors":"Rodolphe Garbit","doi":"10.1215/KJM/1260975039","DOIUrl":null,"url":null,"abstract":"A result of R. Durrett, D. Iglehart and D. Miller states that Brownian meander is Brownian motion conditioned to stay positive for a unit of time, in the sense that it is the weak limit, as $x$ goes to $0$, of Brownian motion started at $x>0$ and conditioned to stay positive for a unit of time. We extend this limit theorem to the case of multidimensional Brownian motion conditioned to stay in a smooth convex cone.","PeriodicalId":50142,"journal":{"name":"Journal of Mathematics of Kyoto University","volume":"49 1","pages":"573-592"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Brownian motion conditioned to stay in a cone\",\"authors\":\"Rodolphe Garbit\",\"doi\":\"10.1215/KJM/1260975039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A result of R. Durrett, D. Iglehart and D. Miller states that Brownian meander is Brownian motion conditioned to stay positive for a unit of time, in the sense that it is the weak limit, as $x$ goes to $0$, of Brownian motion started at $x>0$ and conditioned to stay positive for a unit of time. We extend this limit theorem to the case of multidimensional Brownian motion conditioned to stay in a smooth convex cone.\",\"PeriodicalId\":50142,\"journal\":{\"name\":\"Journal of Mathematics of Kyoto University\",\"volume\":\"49 1\",\"pages\":\"573-592\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics of Kyoto University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/KJM/1260975039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics of Kyoto University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/KJM/1260975039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 16

摘要

R. Durrett, D. Iglehart和D. Miller的结果表明,布朗弯曲是布朗运动在单位时间内被限制为正的,从某种意义上说,它是弱极限,当$x$趋于$0$时,布朗运动从$x$开始,并被限制为在单位时间内保持正。我们将这个极限定理推广到条件为停留在光滑凸锥上的多维布朗运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brownian motion conditioned to stay in a cone
A result of R. Durrett, D. Iglehart and D. Miller states that Brownian meander is Brownian motion conditioned to stay positive for a unit of time, in the sense that it is the weak limit, as $x$ goes to $0$, of Brownian motion started at $x>0$ and conditioned to stay positive for a unit of time. We extend this limit theorem to the case of multidimensional Brownian motion conditioned to stay in a smooth convex cone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Papers on pure and applied mathematics intended for publication in the Kyoto Journal of Mathematics should be written in English, French, or German. Submission of a paper acknowledges that the paper is original and is not submitted elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信