随机环境中相关行走收敛于fbm -局部时间分数阶稳定运动

Q2 Mathematics
Serge Cohen, C. Dombry
{"title":"随机环境中相关行走收敛于fbm -局部时间分数阶稳定运动","authors":"Serge Cohen, C. Dombry","doi":"10.1215/KJM/1256219156","DOIUrl":null,"url":null,"abstract":"It is classical to approximate the distribution of fractional Brownian motion by a renormalized sum $ S_n $ of dependent Gaussian random variables. In this paper we consider such a walk $ Z_n $ that collects random rewards $ \\xi_j $ for $ j \\in \\mathbb Z,$ when the ceiling of the walk $ S_n $ is located at $ j.$ The random reward (or scenery) $ \\xi_j $ is independent of the walk and with heavy tail. We show the convergence of the sum of independent copies of $ Z_n$ suitably renormalized to a stable motion with integral representation, whose kernel is the local time of a fractional Brownian motion (fBm). This work extends a previous work where the random walk $ S_n$ had independent increments limits.","PeriodicalId":50142,"journal":{"name":"Journal of Mathematics of Kyoto University","volume":"49 1","pages":"267-286"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Convergence of dependent walks in a random scenery to fBm-local time fractional stable motions\",\"authors\":\"Serge Cohen, C. Dombry\",\"doi\":\"10.1215/KJM/1256219156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is classical to approximate the distribution of fractional Brownian motion by a renormalized sum $ S_n $ of dependent Gaussian random variables. In this paper we consider such a walk $ Z_n $ that collects random rewards $ \\\\xi_j $ for $ j \\\\in \\\\mathbb Z,$ when the ceiling of the walk $ S_n $ is located at $ j.$ The random reward (or scenery) $ \\\\xi_j $ is independent of the walk and with heavy tail. We show the convergence of the sum of independent copies of $ Z_n$ suitably renormalized to a stable motion with integral representation, whose kernel is the local time of a fractional Brownian motion (fBm). This work extends a previous work where the random walk $ S_n$ had independent increments limits.\",\"PeriodicalId\":50142,\"journal\":{\"name\":\"Journal of Mathematics of Kyoto University\",\"volume\":\"49 1\",\"pages\":\"267-286\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics of Kyoto University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/KJM/1256219156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics of Kyoto University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/KJM/1256219156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 13

摘要

用高斯相关随机变量的重整化和S_n来近似分数阶布朗运动的分布是很经典的。本文考虑这样一个行走$ Z_n $,它在$ mathbb Z $ $中为$ j $ $收集随机奖励$ \xi_j $,当行走$ S_n $的上限$ S_n $位于$ j。$随机奖励(或场景)$ \xi_j $独立于行走并且具有重尾。我们证明了$ Z_n$的独立拷贝和的收敛性,适当地重归一化为具有积分表示的稳定运动,其核是分数阶布朗运动(fBm)的局部时间。这项工作扩展了先前的工作,其中随机漫步$ S_n$具有独立的增量限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence of dependent walks in a random scenery to fBm-local time fractional stable motions
It is classical to approximate the distribution of fractional Brownian motion by a renormalized sum $ S_n $ of dependent Gaussian random variables. In this paper we consider such a walk $ Z_n $ that collects random rewards $ \xi_j $ for $ j \in \mathbb Z,$ when the ceiling of the walk $ S_n $ is located at $ j.$ The random reward (or scenery) $ \xi_j $ is independent of the walk and with heavy tail. We show the convergence of the sum of independent copies of $ Z_n$ suitably renormalized to a stable motion with integral representation, whose kernel is the local time of a fractional Brownian motion (fBm). This work extends a previous work where the random walk $ S_n$ had independent increments limits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Papers on pure and applied mathematics intended for publication in the Kyoto Journal of Mathematics should be written in English, French, or German. Submission of a paper acknowledges that the paper is original and is not submitted elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信