极化变化下轮轴模与Donaldson多项式的一串爆破

Q2 Mathematics
Kimiko Yamada
{"title":"极化变化下轮轴模与Donaldson多项式的一串爆破","authors":"Kimiko Yamada","doi":"10.1215/KJM/1250281738","DOIUrl":null,"url":null,"abstract":"Let $H$ and $H'$ be two ample line bundles over a nonsingular projective surface $X$, and $M(H)$ (resp. $M(H')$) the coarse moduli scheme of $H$-semistable (resp. $H'$-semistable) sheaves of fixed type $(r=2,c_1,c_2)$. In a moduli-theoretic way that comes from elementary transforms, we connect $M(H)$ and $M(H')$ by a sequence of blowing-ups when walls separating $H$ and $H'$ are not necessarily good. As an application, we also consider the polarization change problem of Donaldson polynomials.","PeriodicalId":50142,"journal":{"name":"Journal of Mathematics of Kyoto University","volume":"43 1","pages":"829-878"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A sequence of blowing-ups connecting moduli of sheaves and the Donaldson Polynomial under change of polarization\",\"authors\":\"Kimiko Yamada\",\"doi\":\"10.1215/KJM/1250281738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $H$ and $H'$ be two ample line bundles over a nonsingular projective surface $X$, and $M(H)$ (resp. $M(H')$) the coarse moduli scheme of $H$-semistable (resp. $H'$-semistable) sheaves of fixed type $(r=2,c_1,c_2)$. In a moduli-theoretic way that comes from elementary transforms, we connect $M(H)$ and $M(H')$ by a sequence of blowing-ups when walls separating $H$ and $H'$ are not necessarily good. As an application, we also consider the polarization change problem of Donaldson polynomials.\",\"PeriodicalId\":50142,\"journal\":{\"name\":\"Journal of Mathematics of Kyoto University\",\"volume\":\"43 1\",\"pages\":\"829-878\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics of Kyoto University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/KJM/1250281738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics of Kyoto University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/KJM/1250281738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

摘要

设$H$和$H'$为非奇异投影曲面$X$上的两个充足的线束,$M(H)$ (p。$M(H')$), $H$-半稳定的粗模格式。$H'$-半稳定)固定型$(r=2,c_1,c_2)$。当$H$和$H'$分隔的墙不一定很好时,我们用一种来自初等变换的模理论方法,通过一系列膨胀将$M(H)$和$M(H')$连接起来。作为应用,我们还考虑了Donaldson多项式的极化变化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A sequence of blowing-ups connecting moduli of sheaves and the Donaldson Polynomial under change of polarization
Let $H$ and $H'$ be two ample line bundles over a nonsingular projective surface $X$, and $M(H)$ (resp. $M(H')$) the coarse moduli scheme of $H$-semistable (resp. $H'$-semistable) sheaves of fixed type $(r=2,c_1,c_2)$. In a moduli-theoretic way that comes from elementary transforms, we connect $M(H)$ and $M(H')$ by a sequence of blowing-ups when walls separating $H$ and $H'$ are not necessarily good. As an application, we also consider the polarization change problem of Donaldson polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Papers on pure and applied mathematics intended for publication in the Kyoto Journal of Mathematics should be written in English, French, or German. Submission of a paper acknowledges that the paper is original and is not submitted elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信