群同调和谱中零猜想的代数版本

Q2 Mathematics
Shin-ichi Oguni
{"title":"群同调和谱中零猜想的代数版本","authors":"Shin-ichi Oguni","doi":"10.1215/KJM/1250281050","DOIUrl":null,"url":null,"abstract":"We introduce an algorithm which transforms a finitely presented group G into another one G Ψ . By using this, we can get many finitely presented groups whose group homology with coefficients in the group von Neumann algebra vanish, that is, many counterexamples to an algebraic version of the zero-in-the-spectrum conjecture. Moreover we prove that the Baum-Connes conjecture does not imply the algebraic version of the zero-in-the-spectrum conjecture for finitely presented groups. Also we will show that for any p ≥ 3 the p -th group homology of G Ψ coming from free groups has infinite rank.","PeriodicalId":50142,"journal":{"name":"Journal of Mathematics of Kyoto University","volume":"47 1","pages":"359-369"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The group homology and an algebraic version of the zero-in-the-spectrum conjecture\",\"authors\":\"Shin-ichi Oguni\",\"doi\":\"10.1215/KJM/1250281050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce an algorithm which transforms a finitely presented group G into another one G Ψ . By using this, we can get many finitely presented groups whose group homology with coefficients in the group von Neumann algebra vanish, that is, many counterexamples to an algebraic version of the zero-in-the-spectrum conjecture. Moreover we prove that the Baum-Connes conjecture does not imply the algebraic version of the zero-in-the-spectrum conjecture for finitely presented groups. Also we will show that for any p ≥ 3 the p -th group homology of G Ψ coming from free groups has infinite rank.\",\"PeriodicalId\":50142,\"journal\":{\"name\":\"Journal of Mathematics of Kyoto University\",\"volume\":\"47 1\",\"pages\":\"359-369\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics of Kyoto University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/KJM/1250281050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics of Kyoto University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/KJM/1250281050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

我们介绍了一种将有限呈现群G转化为另一个有限呈现群G的算法Ψ。利用这一点,我们可以得到许多有限呈现的群,这些群与群von Neumann代数中系数的群同源性消失,即谱中零猜想的代数版本的许多反例。此外,我们证明了对于有限呈现群,Baum-Connes猜想并不蕴涵谱中零猜想的代数版本。并证明了对于任意p≥3,来自自由群的G Ψ的p -群同调具有无穷秩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The group homology and an algebraic version of the zero-in-the-spectrum conjecture
We introduce an algorithm which transforms a finitely presented group G into another one G Ψ . By using this, we can get many finitely presented groups whose group homology with coefficients in the group von Neumann algebra vanish, that is, many counterexamples to an algebraic version of the zero-in-the-spectrum conjecture. Moreover we prove that the Baum-Connes conjecture does not imply the algebraic version of the zero-in-the-spectrum conjecture for finitely presented groups. Also we will show that for any p ≥ 3 the p -th group homology of G Ψ coming from free groups has infinite rank.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Papers on pure and applied mathematics intended for publication in the Kyoto Journal of Mathematics should be written in English, French, or German. Submission of a paper acknowledges that the paper is original and is not submitted elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信