幂零轨道的割线变化

Q2 Mathematics
Yasuhiro Omoda
{"title":"幂零轨道的割线变化","authors":"Yasuhiro Omoda","doi":"10.1215/KJM/1250280975","DOIUrl":null,"url":null,"abstract":"Let g be a complex simple Lie algebra. We have the adjoint representation of the adjoint group G on g . Then G acts on the projective space P g . We consider the closure X of the image of a nilpotent orbit in P g . The i -secant variety Sec ( i ) X of a projective variety X is the closure of the union of projective subspaces of dimension i in the ambient space P spanned by i + 1 points on X . In particular we call the 1-secant variety the secant variety. In this paper we give explicit descriptions of the secant and the higher secant varieties of nilpotent orbits of complex classical simple Lie algebras.","PeriodicalId":50142,"journal":{"name":"Journal of Mathematics of Kyoto University","volume":"48 1","pages":"49-71"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The secant varieties of nilpotent orbits\",\"authors\":\"Yasuhiro Omoda\",\"doi\":\"10.1215/KJM/1250280975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let g be a complex simple Lie algebra. We have the adjoint representation of the adjoint group G on g . Then G acts on the projective space P g . We consider the closure X of the image of a nilpotent orbit in P g . The i -secant variety Sec ( i ) X of a projective variety X is the closure of the union of projective subspaces of dimension i in the ambient space P spanned by i + 1 points on X . In particular we call the 1-secant variety the secant variety. In this paper we give explicit descriptions of the secant and the higher secant varieties of nilpotent orbits of complex classical simple Lie algebras.\",\"PeriodicalId\":50142,\"journal\":{\"name\":\"Journal of Mathematics of Kyoto University\",\"volume\":\"48 1\",\"pages\":\"49-71\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics of Kyoto University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/KJM/1250280975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics of Kyoto University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/KJM/1250280975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

设g是一个复杂的单李代数。我们有G在G上的伴随群G的伴随表示。那么G作用于射影空间pg。我们考虑P g中幂零轨道像的闭包X。射影变数X的i - Sec变数Sec (i) X是环境空间P中i维射影子空间由X上的i + 1个点张成的并的闭包。特别地,我们称1-sec变量为sec变量。本文给出了复经典单李代数的幂零轨道的割线和高割线变分的显式描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The secant varieties of nilpotent orbits
Let g be a complex simple Lie algebra. We have the adjoint representation of the adjoint group G on g . Then G acts on the projective space P g . We consider the closure X of the image of a nilpotent orbit in P g . The i -secant variety Sec ( i ) X of a projective variety X is the closure of the union of projective subspaces of dimension i in the ambient space P spanned by i + 1 points on X . In particular we call the 1-secant variety the secant variety. In this paper we give explicit descriptions of the secant and the higher secant varieties of nilpotent orbits of complex classical simple Lie algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Papers on pure and applied mathematics intended for publication in the Kyoto Journal of Mathematics should be written in English, French, or German. Submission of a paper acknowledges that the paper is original and is not submitted elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信