有限域上有限高的K3曲面

Q2 Mathematics
J.-D. Yu, N. Yui
{"title":"有限域上有限高的K3曲面","authors":"J.-D. Yu, N. Yui","doi":"10.1215/KJM/1250271381","DOIUrl":null,"url":null,"abstract":"Arithmetic of K3 surfaces defined over finite fields is investigated. In particular, we show that any K3 surface of finite height over a finite field k of characteristic p > 3 has a quasi-canonical lifting to characteristic 0, and that for any such lifting, the endormorphism algebra of the transcendental cycles, as a Hodge module, is a CM field. The Tate conjecture for the product of certain two K3 surfaces is also proved. We illustrate by examples how to determine explicitly the formal Brauer group associated to a K3 surface over k. Examples discussed here are all of hypergeometric type.","PeriodicalId":50142,"journal":{"name":"Journal of Mathematics of Kyoto University","volume":"48 1","pages":"499-519"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"K3 surfaces of finite height over finite fields\",\"authors\":\"J.-D. Yu, N. Yui\",\"doi\":\"10.1215/KJM/1250271381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Arithmetic of K3 surfaces defined over finite fields is investigated. In particular, we show that any K3 surface of finite height over a finite field k of characteristic p > 3 has a quasi-canonical lifting to characteristic 0, and that for any such lifting, the endormorphism algebra of the transcendental cycles, as a Hodge module, is a CM field. The Tate conjecture for the product of certain two K3 surfaces is also proved. We illustrate by examples how to determine explicitly the formal Brauer group associated to a K3 surface over k. Examples discussed here are all of hypergeometric type.\",\"PeriodicalId\":50142,\"journal\":{\"name\":\"Journal of Mathematics of Kyoto University\",\"volume\":\"48 1\",\"pages\":\"499-519\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics of Kyoto University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/KJM/1250271381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics of Kyoto University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/KJM/1250271381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 10

摘要

研究了有限域上定义的K3曲面的算法。特别地,我们证明了在特征为p > 3的有限域k上的任何有限高度的K3曲面具有到特征0的拟正则提升,并且对于任何这样的提升,超越环的内模代数作为Hodge模是一个CM域。证明了两个K3曲面积的Tate猜想。我们举例说明如何明确地确定与k上的K3曲面相关的形式Brauer群。这里讨论的例子都是超几何型的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
K3 surfaces of finite height over finite fields
Arithmetic of K3 surfaces defined over finite fields is investigated. In particular, we show that any K3 surface of finite height over a finite field k of characteristic p > 3 has a quasi-canonical lifting to characteristic 0, and that for any such lifting, the endormorphism algebra of the transcendental cycles, as a Hodge module, is a CM field. The Tate conjecture for the product of certain two K3 surfaces is also proved. We illustrate by examples how to determine explicitly the formal Brauer group associated to a K3 surface over k. Examples discussed here are all of hypergeometric type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Papers on pure and applied mathematics intended for publication in the Kyoto Journal of Mathematics should be written in English, French, or German. Submission of a paper acknowledges that the paper is original and is not submitted elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信