在映射下的码多项式的图像上

Q2 Mathematics
M. Oura, R. Manni
{"title":"在映射下的码多项式的图像上","authors":"M. Oura, R. Manni","doi":"10.1215/KJM/1250271322","DOIUrl":null,"url":null,"abstract":"The theta map sends code polynomials into the ring of Siegel modular forms of even weights. Explicit description of the image is known for g ≤ 3 and the surjectivity of the theta map follows. Instead it is known that this map is not surjective for g ≥ 5. In this paper we discuss the possibility of an embedding between the associated projective varieties. We prove that this is not possible for g ≥ 4 and consequently we get the non surjectivity of the graded rings for the remaining case g = 4.","PeriodicalId":50142,"journal":{"name":"Journal of Mathematics of Kyoto University","volume":"48 1","pages":"895-906"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"On the image of code polynomials under theta map\",\"authors\":\"M. Oura, R. Manni\",\"doi\":\"10.1215/KJM/1250271322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The theta map sends code polynomials into the ring of Siegel modular forms of even weights. Explicit description of the image is known for g ≤ 3 and the surjectivity of the theta map follows. Instead it is known that this map is not surjective for g ≥ 5. In this paper we discuss the possibility of an embedding between the associated projective varieties. We prove that this is not possible for g ≥ 4 and consequently we get the non surjectivity of the graded rings for the remaining case g = 4.\",\"PeriodicalId\":50142,\"journal\":{\"name\":\"Journal of Mathematics of Kyoto University\",\"volume\":\"48 1\",\"pages\":\"895-906\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics of Kyoto University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/KJM/1250271322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics of Kyoto University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/KJM/1250271322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 12

摘要

映射将代码多项式发送到偶数权值的西格尔模形式环中。图像的显式描述已知为g≤3,映射的满射性随之而来。相反,我们知道这个映射对于g≥5不是满射。本文讨论了相关投影变量之间嵌入的可能性。我们证明了g≥4时这是不可能的,因此我们得到了g = 4时分级环的非满性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the image of code polynomials under theta map
The theta map sends code polynomials into the ring of Siegel modular forms of even weights. Explicit description of the image is known for g ≤ 3 and the surjectivity of the theta map follows. Instead it is known that this map is not surjective for g ≥ 5. In this paper we discuss the possibility of an embedding between the associated projective varieties. We prove that this is not possible for g ≥ 4 and consequently we get the non surjectivity of the graded rings for the remaining case g = 4.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Papers on pure and applied mathematics intended for publication in the Kyoto Journal of Mathematics should be written in English, French, or German. Submission of a paper acknowledges that the paper is original and is not submitted elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信