亚纯函数的无界前分量的不存在性

Q2 Mathematics
Zheng Jian-Hua, P. Niamsup
{"title":"亚纯函数的无界前分量的不存在性","authors":"Zheng Jian-Hua, P. Niamsup","doi":"10.1215/KJM/1248983027","DOIUrl":null,"url":null,"abstract":"This paper is devoted to study of sufficient conditions under which a transcendental meromorphic function has no unbounded Fatou components and to extension of some results for entire functions to meromorphic functions. Actually, we shall mainly discuss non-existence of unbounded wandering domains of a meromorphic function. The case for a composition of finitely many meromorphic functions with at least one of them being transcendental can be also investigated in terms of the argument of this paper.","PeriodicalId":50142,"journal":{"name":"Journal of Mathematics of Kyoto University","volume":"49 1","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-existence of unbounded fatou components of a meromorphic function\",\"authors\":\"Zheng Jian-Hua, P. Niamsup\",\"doi\":\"10.1215/KJM/1248983027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is devoted to study of sufficient conditions under which a transcendental meromorphic function has no unbounded Fatou components and to extension of some results for entire functions to meromorphic functions. Actually, we shall mainly discuss non-existence of unbounded wandering domains of a meromorphic function. The case for a composition of finitely many meromorphic functions with at least one of them being transcendental can be also investigated in terms of the argument of this paper.\",\"PeriodicalId\":50142,\"journal\":{\"name\":\"Journal of Mathematics of Kyoto University\",\"volume\":\"49 1\",\"pages\":\"1-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics of Kyoto University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/KJM/1248983027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics of Kyoto University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/KJM/1248983027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了超越亚纯函数不存在无界法头分量的充分条件,并将整个函数的一些结果推广到亚纯函数。实际上,我们主要讨论亚纯函数的无界漫游域的不存在性。对于有限多个亚纯函数的复合,其中至少有一个是超越的,也可以根据本文的论证来研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-existence of unbounded fatou components of a meromorphic function
This paper is devoted to study of sufficient conditions under which a transcendental meromorphic function has no unbounded Fatou components and to extension of some results for entire functions to meromorphic functions. Actually, we shall mainly discuss non-existence of unbounded wandering domains of a meromorphic function. The case for a composition of finitely many meromorphic functions with at least one of them being transcendental can be also investigated in terms of the argument of this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Papers on pure and applied mathematics intended for publication in the Kyoto Journal of Mathematics should be written in English, French, or German. Submission of a paper acknowledges that the paper is original and is not submitted elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信